微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物

陈涣文, 向奕洁, 曾林, 张旭, 赵晓旭. 微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物[J]. 生态毒理学报, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001
引用本文: 陈涣文, 向奕洁, 曾林, 张旭, 赵晓旭. 微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物[J]. 生态毒理学报, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001
CHEN Huanwen, XIANG Yijie, ZENG Lin, ZHANG Xu, ZHAO Xiaoxu. Multi-species Combined Toxicity of Microplastics and DEHP: Terrestrial and Aquatic Animals and Plants[J]. Asian journal of ecotoxicology, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001
Citation: CHEN Huanwen, XIANG Yijie, ZENG Lin, ZHANG Xu, ZHAO Xiaoxu. Multi-species Combined Toxicity of Microplastics and DEHP: Terrestrial and Aquatic Animals and Plants[J]. Asian journal of ecotoxicology, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001

微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物

    作者简介: 陈涣文(2000—),男,硕士研究生,研究方向为生态毒理学,E-mail:2228503654@qq.com
    通讯作者: 张旭,E-mail:xuzhang0093@ptu.edu.cn; 
  • 基金项目:

    福建省自然科学基金项目(2023J05198,2024J08220);莆田学院引进人才科研启动项目(2023008);莆田学院研究生科研创新项目(yjs2024002)

  • 中图分类号: X171.5

Multi-species Combined Toxicity of Microplastics and DEHP: Terrestrial and Aquatic Animals and Plants

    Corresponding author: ZHANG Xu, xuzhang0093@ptu.edu.cn
  • Fund Project:
  • 摘要: 微塑料(MPs)与邻苯二甲酸二(2-乙基己基)酯(DEHP)作为环境中广泛存在的污染物,其单一及复合毒性效应对陆生动物、水生动物和植物的生态健康构成了严重威胁。笔者系统综述了MPs与DEHP对不同生物类群的毒性作用及其机制,揭示了复合污染的协同或拮抗效应,为生态风险评估提供了重要理论依据。在陆生动物中,MPs单独暴露可诱发肝脏炎症、氧化应激及肠道菌群失衡,并导致神经系统功能异常。MPs与DEHP联合暴露时,毒性效应显著增强,表现为多器官协同损伤:通过活性氧(ROS)介导的线粒体凋亡和坏死性凋亡途径导致肝细胞死亡;肾脏中氧化应激与炎症反应加剧;肠道通透性增加引发全身性炎症;生殖系统则因激素失衡和血-睾屏障破坏而功能受损。对水生动物的研究表明,MPs单独暴露可导致鳃组织损伤、生殖功能障碍及神经递质紊乱。DEHP与MPs联合暴露时,双壳贝类的滤食率显著下降,抗氧化系统崩溃,代谢途径(如能量代谢和脂质代谢)严重紊乱。此外,复合污染还引发斑马鱼幼体心脏发育畸形和大口黑鲈肠道绒毛结构破坏,凸显其对水生生物发育与生存的长期危害。植物实验显示,MPs抑制种子萌发(如番茄)、降低叶绿素含量(如烟草)并诱导氧化应激(如豌豆)。MPs与DEHP的复合效应因物种而异:在黄瓜中表现为抗氧化酶活性的拮抗作用,而在玉米中则协同抑制生长和光合作用,表明污染物的相互作用具有复杂性。综上所述,微塑料和DEHP联合暴露对陆生、水生动物以及植物均产生了比单一暴露更强的毒性效应,但是毒性靶点不同,导致了毒性效应的差异。当前研究在毒性机制深度解析、生态系统层面评估及环境因素交互作用等方面仍存在不足,未来需结合多组学技术和生态模拟实验,为复合污染的生态风险防控提供更全面的理论支撑。
  • 加载中
  • HU M Y, PALIĆ D A. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways[J]. Redox biology, 2020, 37: 101620.
    MAHMUD F, SARKER D B, JOCELYN J A, et al. Molecular and cellular effects of microplastics and nanoplastics: focus on inflammation and senescence[J]. Cells, 2024, 13(21): 1788.
    PRATA J C, DA COSTA J P, LOPES I, et al. Environmental exposure to microplastics: an overview on possible human health effects[J]. Science of the total environment, 2020, 702: 134455.
    GAO D W, WEN Z D. Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes[J]. Science of the total environment, 2016, 541: 986-1001.
    BILLINGS A, JONES K C, PEREIRA M G, et al. Emerging and legacy plasticisers in coastal and estuarine environments: a review[J]. Science of the total environment, 2024, 908: 168462.
    DENG Y F, YAN Z H, SHEN R Q, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut[J]. Environment international, 2020, 143: 105916.
    WU H, LIU Q H, YANG N X, et al. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production[J]. Science of the total environment, 2023, 871: 161962.
    LI S W, SHI M, WANG Y L, et al. Keap1-Nrf2 pathway up-regulation via hydrogen sulfide mitigates polystyrene microplastics induced-hepatotoxic effects[J]. Journal of hazardous materials, 2021, 402: 123933.
    DENG Y F, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific reports, 2017, 7: 46687.
    BABAEI A A, RAFIEE M, KHODAGHOLI F, et al. Nanoplastics-induced oxidative stress, antioxidant defense, and physiological response in exposed Wistar albino rats[J]. Environmental science and pollution research international, 2022, 29(8): 11332-11344.
    YANG Y F, CHEN C Y, LU T H, et al. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice[J]. Journal of hazardous materials, 2019, 366: 703-713.
    WANG J J, LYU L, AN X H, et al. Combined effects of different-sized microplastics and fluindapyr on earthworm: bioaccumulation, oxidative stress, histopathological responses and gut microbiota[J]. Environmental pollution, 2025, 366: 125478.
    LI J, LI J, ZHAI L, et al. Co-exposure of polycarbonate microplastics aggravated the toxic effects of imidacloprid on the liver and gut microbiota in mice[J]. Environmental toxicology and pharmacology, 2023, 101: 104194.
    LIU X, YANG H K, YAN X Z, et al. Co-exposure of polystyrene microplastics and iron aggravates cognitive decline in aging mice via ferroptosis induction[J]. Ecotoxicology and environmental safety, 2022, 233: 113342.
    CHEN L, QI M, ZHANG L L, et al. Di(2-ethylhexyl) phthalate and microplastics cause necroptosis and apoptosis in hepatocytes of mice by inducing oxidative stress[J]. Environmental toxicology, 2023, 38(6): 1226-1238.
    CHENG W, LI X L, ZHOU Y, et al. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids[J]. Science of the total environment, 2022, 806: 150328.
    ZHANG Y, YIN K, WANG D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κ B-NLRP3-GSDMD and AMPK-PGC-1α axes[J]. Science of the total environment, 2022, 840: 156727.
    LI B Q, DING Y F, CHENG X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 2020, 244: 125492.
    CHEN Y J, WANG Y, CUI Z Q, et al. Endocrine disrupting chemicals: a promoter of non-alcoholic fatty liver disease[J]. Frontiers in public health, 2023, 11: 1154837.
    LI S S, GU X D, ZHANG M Y, et al. Di (2-ethylhexyl) phthalate and polystyrene microplastics co-exposure caused oxidative stress to activate NF-κ
    GOODMAN K E, HUA T, SANG Q A. Effects of polystyrene microplastics on human kidney and liver cell morphology, cellular proliferation, and metabolism[J]. ACS omega, 2022, 7(38): 34136-34153.
    KADAC-CZAPSKA K, OŠKO J, KNEZ E, et al. Microplastics and oxidative stress-current problems and prospects[J]. Antioxidants, 2024, 13(5): 579.
    WANG W Z, GUAN J F, FENG Y Y, et al. Polystyrene microplastics induced nephrotoxicity associated with oxidative stress, inflammation, and endoplasmic reticulum stress in juvenile rats[J]. Frontiers in nutrition, 2023, 9: 1059660.
    HAN J, YAN J, LI K, et al. Distribution of micro-nano PS, DEHP, and/or MEHP in mice and nerve cell models in vitro after exposure to micro-nano PS and DEHP[J]. Toxics, 2023, 11(5): 441.
    HIRT N, BODY-MALAPEL M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature[J]. Particle and fibre toxicology, 2020, 17(1): 57.
    YANG G, GONG C Y, ZHENG X Y, et al. Early clues and molecular mechanism involved in neurodegenerative diseases induced in immature mice by combined exposure to polypropylene microplastics and DEHP[J]. Environmental pollution, 2023, 336: 122406.
    ZHANG W Y, SUN X Y, QI X, et al. Di-(2-ethylhexyl) phthalate and microplastics induced neuronal apoptosis through the PI3K/AKT pathway and mitochondrial dysfunction[J]. Journal of agricultural and food chemistry, 2022, 70(35): 10771-10781.
    DENG Y F, YAN Z H, SHEN R Q, et al. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus)[J]. Journal of hazardous materials, 2021, 406: 124644.
    LI D Y, SUN W, JIANG X J, et al. Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice[J]. Ecotoxicology and environmental safety, 2022, 245: 114104.
    ZHANG Q R, ZHOU X, SUN Y, et al. Harmful effects of microplastics on respiratory system of aquatic animals: a systematic review and meta-analysis[J]. Aquatic toxicology, 2024, 273: 107003.
    CAO J W, XU R, WANG F H, et al. Polyethylene microplastics trigger cell apoptosis and inflammation via inducing oxidative stress and activation of the NLRP3 inflammasome in carp gills[J]. Fish & shellfish immunology, 2023, 132: 108470.
    BRANDTS I, TELES M, GONÇALVES A P, et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine[J]. Science of the total environment, 2018, 643: 775-784.
    SUN S M, JIN Y T, LUO P H, et al. Polystyrene microplastics induced male reproductive toxicity and transgenerational effects in freshwater prawn[J]. Science of the total environment, 2022, 842: 156820.
    SHI W, SUN S G, HAN Y, et al. Microplastics hamper the fertilization success of a broadcast spawning bivalve through reducing gamete collision and gamete fusion efficiency[J]. Aquatic toxicology, 2022, 242: 106049.
    PARK S H, KIM K. Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos[J]. Chemosphere, 2022, 286: 131868.
    DE MARCO G, CONTI G O, GIANNETTO A, et al. Embryotoxicity of polystyrene microplastics in zebrafish Danio rerio[J]. Environmental research, 2022, 208: 112552.
    LI R X, NIE J J, QIU D G, et al. Toxic effect of chronic exposure to polyethylene nano/microplastics on oxidative stress, neurotoxicity and gut microbiota of adult zebrafish (Danio rerio)[J]. Chemosphere, 2023, 339: 139774.
    BARBOZA L G A, VIEIRA L R, BRANCO V, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758)[J]. Aquatic toxicology, 2018, 195: 49-57.
    RODA J F B, LAUER M M, RISSO W E, et al. Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: Is there any interaction?[J]. Comparative biochemistry and physiology part A: molecular & integrative physiology, 2020, 242: 110659.
    GRIGORAKIS S, MASON S A, DROUILLARD K G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (Carassius auratus)[J]. Chemosphere, 2017, 169: 233-238.
    LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the total environment, 2018, 619: 1-8.
    JIN Y X, XIA J Z, PAN Z H, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental pollution, 2018, 235: 322-329.
    QIAO R X, SHENG C, LU Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the total environment, 2019, 662: 246-253.
    张晓飞, 余秋然, 赵宇航, 等. 聚乙烯微塑料对尼罗罗非鱼(Oreochromis niloticus)生长、抗氧化、免疫和肠道微生物的影响[J]. 生态毒理学报, 2022, 17(6): 301-314.

    ZHANG X F, YU Q R, ZHAO Y H, et al. Effect of high density-polyethylene on growth performance, antioxidant capacity, immune functions and intestinal microbiota of Oreochromis niloticus[J]. Asian journal of ecotoxicology, 2022, 17(6): 301-314.

    景美琪, 李绰然, 王隆清, 等. 微塑料的毒理学研究进展——微塑料对微生物、藻类、鱼类和哺乳动物类的毒理学效应[J]. 生态毒理学报, 2022, 17(4): 265-280.

    JING M Q, LI C R, WANG L Q, et al. Toxicological research progress of microplastics: toxicological effects of microplastics on microorganism, algae, fish and mammal[J]. Asian journal of ecotoxicology, 2022, 17(4): 265-280.

    钱宝留, 孙烽铸, 吕军生, 等. 斑马鱼幼鱼尾鳍再生的不同阶段对微塑料毒性响应的差异[J]. 生态毒理学报, 2023, 18(5): 94-102.

    QIAN B L, SUN F Z, LV J S, et al. Different response to toxicity of microplastics in zebrafish larvae at different stages of caudal fin regeneration[J]. Asian journal of ecotoxicology, 2023, 18(5): 94-102.

    SıKDOKUR E, BELIVERMIŞ M, SEZER N, et al. Effects of microplastics and mercury on Manila clam Ruditapes philippinarum: feeding rate, immunomodulation, histopathology and oxidative stress[J]. Environmental pollution, 2020, 262: 114247.
    JIANG W W, FANG J H, DU M R, et al. Microplastics influence physiological processes, growth and reproduction in the Manila clam, Ruditapes philippinarum[J]. Environmental pollution, 2022, 293: 118502.
    ZHOU Y F, LI Y P, LAN W L, et al. Short-term exposure to MPs and DEHP disrupted gill functions in marine bivalves[J]. Nanomaterials, 2022, 12(22): 4077.
    WANG Y N, SHI Q Q, ZHANG M L, et al. Combined ecotoxicity of polystyrene microplastics and di-(2-ethylhexyl) phthalate increase exposure risks to Mytilus coruscus based on the bioaccumulation, oxidative stress, metabolic profiles, and nutritional interferences[J]. Journal of hazardous materials, 2024, 480: 136381.
    RAGUSO C, GRECH D, BECCHI A, et al. Detection of microplastics and phthalic acid esters in sea urchins from Sardinia (Western Mediterranean Sea)[J]. Marine pollution bulletin, 2022, 185: 114328.
    SHI Q Q, ZHANG X Q, ZHANG Z M, et al. Transcriptome sequencing and metabolite analysis reveal the single and combined effects of microplastics and di-(2-ethylhexyl) phthalate on Peneaus vannamei[J]. Science of the total environment, 2023, 867: 161549.
    WANG H D, WANG Y Q, WANG Q N, et al. The combined toxic effects of polyvinyl chloride microplastics and di(2-ethylhexyl) phthalate on the juvenile zebrafish (Danio rerio)[J]. Journal of hazardous materials, 2022, 440: 129711.
    HEINDLER F M, ALAJMI F, HUERLIMANN R, et al. Toxic effects of polyethylene terephthalate microparticles and di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris[J]. Ecotoxicology and environmental safety, 2017, 141: 298-305.
    LIAO H P, LIU S L, JUNAID M, et al. Di-(2-ethylhexyl) phthalate exacerbated the toxicity of polystyrene nanoplastics through histological damage and intestinal microbiota dysbiosis in freshwater Micropterus salmoides[J]. Water research, 2022, 219: 118608.
    SHI R Y, LIU W T, LIAN Y H, et al. Phytotoxicity of polystyrene, polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentum L.)[J]. Journal of environmental management, 2022, 317: 115441.
    WANG Y Q, BAI J H, WEN L X, et al. Phytotoxicity of microplastics to the floating plant Spirodela polyrhiza (L.): plant functional traits and metabolomics[J]. Environmental pollution, 2023, 322: 121199.
    TENG L H, ZHU Y H, LI H B, et al. The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings[J]. Ecotoxicology and environmental safety, 2022, 231: 113155.
    YIN L S, WEN X F, HUANG D L, et al. Interactions between microplastics/nanoplastics and vascular plants[J]. Environmental pollution, 2021, 290: 117999.
    KANG M G, LIU Y, WANG H K, et al. Physiological toxicity and antioxidant mechanism of photoaging microplastics on Pisum sativum L. seedlings[J]. Toxics, 2023, 11(3): 242.
    XIAO H Y, LIU Y J, YU H X, et al. Combined toxicity influence of polypropylene microplastics and di-2-ethylhexyl phthalate on physiological-biochemical characteristics of cucumber (Cucumis sativus L.)[J]. Plant physiology and biochemistry, 2023, 201: 107811.
    SUN H F, LEI C L, YUAN Y H, et al. Nanoplastic impacts on the foliar uptake, metabolism and phytotoxicity of phthalate esters in corn (Zea mays L.) plants[J]. Chemosphere, 2022, 304: 135309.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览数:  52
  • PDF下载数:  33
  • 施引文献:  0
出版历程
  • 收稿日期:  2025-02-27
陈涣文, 向奕洁, 曾林, 张旭, 赵晓旭. 微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物[J]. 生态毒理学报, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001
引用本文: 陈涣文, 向奕洁, 曾林, 张旭, 赵晓旭. 微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物[J]. 生态毒理学报, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001
CHEN Huanwen, XIANG Yijie, ZENG Lin, ZHANG Xu, ZHAO Xiaoxu. Multi-species Combined Toxicity of Microplastics and DEHP: Terrestrial and Aquatic Animals and Plants[J]. Asian journal of ecotoxicology, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001
Citation: CHEN Huanwen, XIANG Yijie, ZENG Lin, ZHANG Xu, ZHAO Xiaoxu. Multi-species Combined Toxicity of Microplastics and DEHP: Terrestrial and Aquatic Animals and Plants[J]. Asian journal of ecotoxicology, 2025, 20(2): 137-151. doi: 10.7524/AJE.1673-5897.20250227001

微塑料和DEHP的多物种联合毒性:陆生、水生动物与植物

    通讯作者: 张旭,E-mail:xuzhang0093@ptu.edu.cn; 
    作者简介: 陈涣文(2000—),男,硕士研究生,研究方向为生态毒理学,E-mail:2228503654@qq.com
  • 1. 福建省新型污染物生态毒理效应与控制重点实验室,莆田 351100;
  • 2. 生态环境及其信息图谱福建省高等学校重点实验室,莆田 351100;
  • 3. 莆田学院环境与生物工程学院,莆田 351100
基金项目:

福建省自然科学基金项目(2023J05198,2024J08220);莆田学院引进人才科研启动项目(2023008);莆田学院研究生科研创新项目(yjs2024002)

摘要: 微塑料(MPs)与邻苯二甲酸二(2-乙基己基)酯(DEHP)作为环境中广泛存在的污染物,其单一及复合毒性效应对陆生动物、水生动物和植物的生态健康构成了严重威胁。笔者系统综述了MPs与DEHP对不同生物类群的毒性作用及其机制,揭示了复合污染的协同或拮抗效应,为生态风险评估提供了重要理论依据。在陆生动物中,MPs单独暴露可诱发肝脏炎症、氧化应激及肠道菌群失衡,并导致神经系统功能异常。MPs与DEHP联合暴露时,毒性效应显著增强,表现为多器官协同损伤:通过活性氧(ROS)介导的线粒体凋亡和坏死性凋亡途径导致肝细胞死亡;肾脏中氧化应激与炎症反应加剧;肠道通透性增加引发全身性炎症;生殖系统则因激素失衡和血-睾屏障破坏而功能受损。对水生动物的研究表明,MPs单独暴露可导致鳃组织损伤、生殖功能障碍及神经递质紊乱。DEHP与MPs联合暴露时,双壳贝类的滤食率显著下降,抗氧化系统崩溃,代谢途径(如能量代谢和脂质代谢)严重紊乱。此外,复合污染还引发斑马鱼幼体心脏发育畸形和大口黑鲈肠道绒毛结构破坏,凸显其对水生生物发育与生存的长期危害。植物实验显示,MPs抑制种子萌发(如番茄)、降低叶绿素含量(如烟草)并诱导氧化应激(如豌豆)。MPs与DEHP的复合效应因物种而异:在黄瓜中表现为抗氧化酶活性的拮抗作用,而在玉米中则协同抑制生长和光合作用,表明污染物的相互作用具有复杂性。综上所述,微塑料和DEHP联合暴露对陆生、水生动物以及植物均产生了比单一暴露更强的毒性效应,但是毒性靶点不同,导致了毒性效应的差异。当前研究在毒性机制深度解析、生态系统层面评估及环境因素交互作用等方面仍存在不足,未来需结合多组学技术和生态模拟实验,为复合污染的生态风险防控提供更全面的理论支撑。

English Abstract

参考文献 (62)

返回顶部

目录

/

返回文章
返回