钒-氮共掺杂TiO2的合成、表征及光催化性能

李琪, 韩立娟, 刘刚, 陈作雁, 安兴才. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024
引用本文: 李琪, 韩立娟, 刘刚, 陈作雁, 安兴才. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024
LI Qi, HAN Lijuan, LIU Gang, CHEN Zuoyan, AN Xingcai. Synthesis,characterization and Degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024
Citation: LI Qi, HAN Lijuan, LIU Gang, CHEN Zuoyan, AN Xingcai. Synthesis,characterization and Degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024

钒-氮共掺杂TiO2的合成、表征及光催化性能

  • 基金项目:

    甘肃省科技支撑计划项目(090NKCA122)资助.

Synthesis,characterization and Degradation performance of V-N-TiO2 nanoparticle photocatalysts

  • Fund Project:
  • 摘要: 以偏钒酸铵作为钒源、二乙醇胺作为氮源,采用溶胶-凝胶法合成了钒-氮共掺杂TiO2.通过XRD、UV-Vis、TEM、XPS、BET等表征手段,对光催化剂的晶体结构及形貌、紫外可见光响应特性、比表面积、表面元素及存在形式进行分析,探讨钒氮共掺杂TiO2的影响机制.以苯酚为污染物,评价其在紫外光及可见光下的光催化活性.结果显示,所合成的光催化剂均为锐钛矿,钒氮共掺杂能够增大其比表面积,并使光吸收范围拓展至可见光区,N以O-Ti-N、Ti-O-N结构存在于钒氮共掺杂TiO2中,V以V5+的形式存在,钒-氮共掺杂TiO2在紫外光下对苯酚降解速率是TiO2的3.18倍,在可见光下对苯酚的降解速率为TiO2的2.56倍,重复使用7次后,钒-氮共掺杂TiO2对苯酚的降解率仍可以达到99%以上.
  • 加载中
  • [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37
    [2] 方艳芬, 兰天龙, 郑云,等. 碘铈共掺杂纳米TiO2的制备及可见光光催化性能[J]. 环境化学, 2012,31(2): 135-143
    [3] Maurya A, Chauhan P. Structural and optical characterization of CdS/TiO2 nanocomposite[J]. Materials Characterization, 2011, 62(4):382-390
    [4] Wang Y, Huang Y, Ho W,et al. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation[J]. Journal of Hazardous Materials, 2009, 169(1):77-87
    [5] Li L, Liu C, Liu Y. Study on activities of vanadium(Ⅳ/Ⅴ)doped TiO2(R) nanorods induced by UV and visible light[J]. Materials Chemistry and Physics, 2009, 113(2/3):551-557
    [6] 吴俊明,王亚平,杨汉培,等.Ce 及N共掺杂TiO2 光催化性能及Ce 组分的作用[J].无机化学学报, 2010,26(2):203-210
    [7] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293:269-271
    [8] Jirapat A, Puangrat K, Supapan S. Visible light adsorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants[J]. Journal of Hazardous Materials, 2009, 168(1):253-261
    [9] Li H, Wang D, Fan H, et al. Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties [J]. Journal of Colloid and Interface Science, 2011, 354(1):175-180
    [10] 王丹军, 郭莉, 李东升,等. N、S共掺TiO2光催化剂的合成及其在废水处理中的应用[J].环境化学, 2010,29(5):842-847
    [11] Liu S, Chen X. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation [J]. Journal of Hazardous Materials, 2008, 152(1):48-55
    [12] Wu G, Chen A. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental application [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2008, 195(1):47-53
    [13] Higanshimoto S, Tanihata W, Nakagawa,et al. Effective photocatalytic decomposition of VOC under visible light irradiation on N-doped TiO2 modified by vanadium species[J]. Applied Catalysis A: General, 2008, 340(1):98-104
    [14] Liu J W, Han R, Zhao Y. Enhanced Photoactivity of V-N codoped TiO2 derived from a two-step hydrothermal procedure for the degradation of PCP-Na under visible light irradiation [J].Journal of Physics and Chemistry C, 2011, 115:4507-4515
    [15] Chang, S;Liu W. Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2 [J]. Applied Catalysis B:Envionmental, 2011, 101(2):333-342
    [16] Xu Jingjing, Ao Yanhui, Chen Mingdong,et al. Potocatalytic activbity of vanadium-doped titania-activated carbon composite film under visible light[J].Thin Solid Film 2010,518(15):4170-4174
    [17] Gole J L,Stout J D,Burda C, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale[J]. Journal of Physics and Chemistry B, 2004, 108(4):1230-1240
    [18] Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping [J]. Applied Catalysis. A, 2005, 284(1):131-137
    [19] Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2[J]. Jornal of Physics and Chemistry,2004, 108(50):19384-19387
    [20] 王怡中,胡春,汤鸿霄.在TiO2催化剂上苯酚光催化氧化反应研究[J].环境科学学报,1995,15(4):472-479
  • 加载中
计量
  • 文章访问数:  1067
  • HTML全文浏览数:  992
  • PDF下载数:  563
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-21
李琪, 韩立娟, 刘刚, 陈作雁, 安兴才. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024
引用本文: 李琪, 韩立娟, 刘刚, 陈作雁, 安兴才. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024
LI Qi, HAN Lijuan, LIU Gang, CHEN Zuoyan, AN Xingcai. Synthesis,characterization and Degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024
Citation: LI Qi, HAN Lijuan, LIU Gang, CHEN Zuoyan, AN Xingcai. Synthesis,characterization and Degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013, 32(6): 1073-1080. doi: 10.7524/j.issn.0254-6108.2013.06.024

钒-氮共掺杂TiO2的合成、表征及光催化性能

  • 1.  甘肃省分析测试中心, 兰州, 730000;
  • 2.  甘肃省科学院自然能源研究所, 兰州, 730046
基金项目:

甘肃省科技支撑计划项目(090NKCA122)资助.

摘要: 以偏钒酸铵作为钒源、二乙醇胺作为氮源,采用溶胶-凝胶法合成了钒-氮共掺杂TiO2.通过XRD、UV-Vis、TEM、XPS、BET等表征手段,对光催化剂的晶体结构及形貌、紫外可见光响应特性、比表面积、表面元素及存在形式进行分析,探讨钒氮共掺杂TiO2的影响机制.以苯酚为污染物,评价其在紫外光及可见光下的光催化活性.结果显示,所合成的光催化剂均为锐钛矿,钒氮共掺杂能够增大其比表面积,并使光吸收范围拓展至可见光区,N以O-Ti-N、Ti-O-N结构存在于钒氮共掺杂TiO2中,V以V5+的形式存在,钒-氮共掺杂TiO2在紫外光下对苯酚降解速率是TiO2的3.18倍,在可见光下对苯酚的降解速率为TiO2的2.56倍,重复使用7次后,钒-氮共掺杂TiO2对苯酚的降解率仍可以达到99%以上.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回