[1]
|
Sarmah A K, Meyer M T, Boxall B A, et al. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759
|
[2]
|
Batt A L, Snow D D, Aga D S, et al. Occurrence of sulphonamide antimicrobials in private water wells in Washington County. Idaho, USA [J]. Chemosphere, 2006, 64(11): 1963-1971
|
[3]
|
巫杨, Smith L, Kookana R, et al.磺胺甲恶唑和甲氧苄氨嘧啶在土壤中的好氧降解及对微生物呼吸的影响[J]. 环境化学, 2011,30(12): 2015-2021
|
[4]
|
Jogensen S E, Halling-Soensen B. Drugs in the environment [J]. Chemosphere, 2000, 40:691-699
|
[5]
|
Ryan C C, Tan D T, Arnold W A. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent [J]. Water Research, 2011, 45(3):1280-1286
|
[6]
|
Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J].Environmental Science and Technology, 2004, 38 (10):3933-3940
|
[7]
|
Trovo A G, Nogueira R F P, Aguerra A, et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation [J]. Water Research, 2009, 43:3922-3931
|
[8]
|
Canonica S, Meunier L, von Gunten U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water [J]. Water Research, 2008, 42 (1/2):121-128
|
[9]
|
Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals [J]. Environ Sci Technol, 2005, 39:9509-9516
|
[10]
|
Bekci Z, Seki Y, Yurdakoc M K. Equilibrium studies for trimethoprim adsorption on montmorillonite KSF[J].Journal of Hazardous Materials, 2006, 133: 233-242
|
[11]
|
Schwarzenbach R P, Gschwend P M, Imboden D M. Photochemical transformation reactions//Environmental Organic Chemistry, second ed[M]. New York: John Wiley & Sons, Inc., 2003: 611-686
|
[12]
|
Packer J L, Werner J J, Latch D E, et al. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen [J]. Aquatic Sciences, 2003, 65 (4):342-351
|
[13]
|
Rosario-Ortiz F L, Wert E C, Snyder S A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater[J]. Water Research, 2010, 44 (5): 1440-1448
|
[14]
|
Huber M M, Canonica S, Park G Y, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes [J]. Environmental Science & Technology, 2003, 37(5): 1016-1024
|
[15]
|
Trovo A G, Nogueira R F P, Aguerra A, et al. Photodegradation of sulfamethoxazole in various aqueous media: Persistence,toxicity and photoproducts assessment[J]. Chemosphere, 2009, 77:1292-1298
|
[16]
|
Abellan M N, Gimenez J, Esplugas S. Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim [J]. Catalysis Today, 2009, 144:131-136
|
[17]
|
Rodayan A, Roy R, Yargeau V. Oxidation products of sulfamethoxazole in ozonated secondary effluent [J]. Journal of Hazardous Materials, 2010, 177:237-243
|
[18]
|
Abellan M N, Bayarri B, Gimenez J, et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2[J]. Appl Catal (B: Environ), 2007, 74:233-241
|
[19]
|
Sirtori C, Aguera A, Gernjak W, et al. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways [J]. Water Research, 2010, 44: 2735-2744
|
[20]
|
Luo X Z, Zheng Z, Greaves J, et al. Trimethoprim: Kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment[J]. Water Research, 2012, 46(4): 1327-1336
|
[21]
|
Michael I, Hapeshi E, Osorio V, et al. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: Transformation products and ecotoxicity evaluation[J]. Sci Total Environ, 2012, 430:167-173
|