水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解

巫杨, Williams Mike, Kookana Rai, 吴克. 水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解[J]. 环境化学, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025
引用本文: 巫杨, Williams Mike, Kookana Rai, 吴克. 水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解[J]. 环境化学, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025
WU Yang, WILLIAMS Mike, KOOKANA Rai, WU Ke. Natural sunlight photodegradation of sulfamethazole and trimethoprim in aquatic environment[J]. Environmental Chemistry, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025
Citation: WU Yang, WILLIAMS Mike, KOOKANA Rai, WU Ke. Natural sunlight photodegradation of sulfamethazole and trimethoprim in aquatic environment[J]. Environmental Chemistry, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025

水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解

  • 基金项目:

    中国教育部-澳大利亚联邦科工组织联合培养博士生项目.

Natural sunlight photodegradation of sulfamethazole and trimethoprim in aquatic environment

  • Fund Project:
  • 摘要: 实验研究了磺胺甲恶唑和甲氧苄氨嘧啶连续暴露于自然光下72 h,在pH值为4.0、7.0、9.0水体中的光降解行为,同时考察了黑暗条件下对照样品在不同pH条件下的稳定性.实验表明,光强、光照时间、水体pH都直接影响到磺胺甲恶唑的去除率.在自然光照环境下,不同pH溶液中的磺胺甲恶唑均易发生光降解,而黑暗对照样品去除率较小.甲氧苄氨嘧啶则比较稳定,几乎未发生降解,但黑暗对照样品在pH值为4.0和7.0的溶液中,与起始浓度相比,去除率大于10%,这可能主要与该药物在不同pH溶液中的离子形态及光照过程中的温度波动有关.
  • 加载中
  • [1] Sarmah A K, Meyer M T, Boxall B A, et al. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759
    [2] Batt A L, Snow D D, Aga D S, et al. Occurrence of sulphonamide antimicrobials in private water wells in Washington County. Idaho, USA [J]. Chemosphere, 2006, 64(11): 1963-1971
    [3] 巫杨, Smith L, Kookana R, et al.磺胺甲恶唑和甲氧苄氨嘧啶在土壤中的好氧降解及对微生物呼吸的影响[J]. 环境化学, 2011,30(12): 2015-2021
    [4] Jogensen S E, Halling-Soensen B. Drugs in the environment [J]. Chemosphere, 2000, 40:691-699
    [5] Ryan C C, Tan D T, Arnold W A. Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent [J]. Water Research, 2011, 45(3):1280-1286
    [6] Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J].Environmental Science and Technology, 2004, 38 (10):3933-3940
    [7] Trovo A G, Nogueira R F P, Aguerra A, et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation [J]. Water Research, 2009, 43:3922-3931
    [8] Canonica S, Meunier L, von Gunten U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water [J]. Water Research, 2008, 42 (1/2):121-128
    [9] Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals [J]. Environ Sci Technol, 2005, 39:9509-9516
    [10] Bekci Z, Seki Y, Yurdakoc M K. Equilibrium studies for trimethoprim adsorption on montmorillonite KSF[J].Journal of Hazardous Materials, 2006, 133: 233-242
    [11] Schwarzenbach R P, Gschwend P M, Imboden D M. Photochemical transformation reactions//Environmental Organic Chemistry, second ed[M]. New York: John Wiley & Sons, Inc., 2003: 611-686
    [12] Packer J L, Werner J J, Latch D E, et al. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen [J]. Aquatic Sciences, 2003, 65 (4):342-351
    [13] Rosario-Ortiz F L, Wert E C, Snyder S A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater[J]. Water Research, 2010, 44 (5): 1440-1448
    [14] Huber M M, Canonica S, Park G Y, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes [J]. Environmental Science & Technology, 2003, 37(5): 1016-1024
    [15] Trovo A G, Nogueira R F P, Aguerra A, et al. Photodegradation of sulfamethoxazole in various aqueous media: Persistence,toxicity and photoproducts assessment[J]. Chemosphere, 2009, 77:1292-1298
    [16] Abellan M N, Gimenez J, Esplugas S. Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim [J]. Catalysis Today, 2009, 144:131-136
    [17] Rodayan A, Roy R, Yargeau V. Oxidation products of sulfamethoxazole in ozonated secondary effluent [J]. Journal of Hazardous Materials, 2010, 177:237-243
    [18] Abellan M N, Bayarri B, Gimenez J, et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2[J]. Appl Catal (B: Environ), 2007, 74:233-241
    [19] Sirtori C, Aguera A, Gernjak W, et al. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways [J]. Water Research, 2010, 44: 2735-2744
    [20] Luo X Z, Zheng Z, Greaves J, et al. Trimethoprim: Kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment[J]. Water Research, 2012, 46(4): 1327-1336
    [21] Michael I, Hapeshi E, Osorio V, et al. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: Transformation products and ecotoxicity evaluation[J]. Sci Total Environ, 2012, 430:167-173
  • 加载中
计量
  • 文章访问数:  1582
  • HTML全文浏览数:  1466
  • PDF下载数:  750
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-09-10
巫杨, Williams Mike, Kookana Rai, 吴克. 水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解[J]. 环境化学, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025
引用本文: 巫杨, Williams Mike, Kookana Rai, 吴克. 水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解[J]. 环境化学, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025
WU Yang, WILLIAMS Mike, KOOKANA Rai, WU Ke. Natural sunlight photodegradation of sulfamethazole and trimethoprim in aquatic environment[J]. Environmental Chemistry, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025
Citation: WU Yang, WILLIAMS Mike, KOOKANA Rai, WU Ke. Natural sunlight photodegradation of sulfamethazole and trimethoprim in aquatic environment[J]. Environmental Chemistry, 2013, 32(6): 1081-1087. doi: 10.7524/j.issn.0254-6108.2013.06.025

水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解

  • 1.  合肥学院生物与环境工程系, 合肥, 230022;
  • 2.  合肥环境工程研究院, 合肥, 230022;
  • 3.  CSIRO, Land and Water, Water for a Healthy Country Research Flagship, Adelaide, 5064, Australia
基金项目:

中国教育部-澳大利亚联邦科工组织联合培养博士生项目.

摘要: 实验研究了磺胺甲恶唑和甲氧苄氨嘧啶连续暴露于自然光下72 h,在pH值为4.0、7.0、9.0水体中的光降解行为,同时考察了黑暗条件下对照样品在不同pH条件下的稳定性.实验表明,光强、光照时间、水体pH都直接影响到磺胺甲恶唑的去除率.在自然光照环境下,不同pH溶液中的磺胺甲恶唑均易发生光降解,而黑暗对照样品去除率较小.甲氧苄氨嘧啶则比较稳定,几乎未发生降解,但黑暗对照样品在pH值为4.0和7.0的溶液中,与起始浓度相比,去除率大于10%,这可能主要与该药物在不同pH溶液中的离子形态及光照过程中的温度波动有关.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回