抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展

于帅, 李锦, 毛大庆, 罗义. 抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展[J]. 环境化学, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008
引用本文: 于帅, 李锦, 毛大庆, 罗义. 抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展[J]. 环境化学, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008
YU Shuai, LI Jin, MAO Daqing, LUO Yi. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater (sewage) treatment system[J]. Environmental Chemistry, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008
Citation: YU Shuai, LI Jin, MAO Daqing, LUO Yi. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater (sewage) treatment system[J]. Environmental Chemistry, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008

抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展

  • 基金项目:

    国家环保公益项目(201309031);国家自然科学基金项目(31170472,31070333,31270542);教育部“新世纪”优秀人才基金资助(NCET-11-0254)。

Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater (sewage) treatment system

  • Fund Project:
  • 摘要: 人类在生活生产中大量使用抗生素,使抗生素抗性菌(Antibiotic resistance bacteria,ARB)和抗性基因(Antibiotic resistance genes,ARGs)日益在环境中被检出.含有这些污染物的污水被污水处理系统(Wastewater treatment plants,WWTPs)所接纳,抗性细菌在处理系统内得以大量增殖,使得污水处理系统成为抗性细菌和抗性基因的重要储存库.由于污水处理系统对ARB和ARGs的处理效果并不理想,抗性基因随出水排放至纳污水体,会造成环境中抗性基因污染.本文总结并分析了抗生素抗性基因在污水处理系统中的来源、传播扩散途径、归趋以及污染控制的最新研究进展,提出了现存问题以及今后工作的重点,以期为ARGs的污染控制及消减提供可行性参考.
  • 加载中
  • [1] Rysz M, Alvarez P J J. Amplification and attenuation of tetracycline resistance in soil bacteria: Aquifer column experiments[J]. Water Research, 2004, 38:3705-3712
    [2] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in Northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450
    [3] Liu Y F, Wang C H, Janapatla R P,et al. Presence of plasmid pA15 correlates with prevalence of constitutive MLSB resistance in group A streptococcal isolates at a university hospital in southern Taiwan[J]. J Antimicrob Chemother, 2007, 59:1167-1170
    [4] Agersø Y, Sandvang D. Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil[J]. Applied Environment Microbiology, 2005, 71:7941-7947
    [5] AgersøY, Petersen A. The tetracycline resistance determinant tet 39 and the sulphonamide resistance gene sulII are common among resistant Acinetobacter spp. isolated from integrated fish farms in Thailand[J]. J Antimicrob Chemother, 2007, 59:23-27
    [6] Heuer H, Krögerrecklenfort E, Wellington E M H, et al. Gentamic in resistance genes in environmental bacteria: Prevalence and transfer[J]. FEMS Microbiol Lett, 2002, 42 (2): 289-302
    [7] Auerbach E A, Seyfried E E, McMahon K D. Tetracycline resistance genes in activated sludge wastewater treatment plants[J]. Water Research, 2007, 41(5):1143-1151
    [8] Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693
    [9] Borjesson S, Melin S, Matussek A, et al. A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal wastewater treatment plant[J].Water Research, 2009, 43: 925-932
    [10] Zhang X X, Zhang T. Occurrence, Abundance, and Diversity of Tetracycline Resistance Genes in 15 Sewage Treatment Plants across China and other global locations[J]. Environmental Science & Technology, 2011, 45:2598-2604
    [11] Huang J J, Hu H Y,Lu S Q, et al. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China[J]. Environment International, 2011, 42:31-36
    [12] Łuczkiewicz A, Jankowska K, Fudala-Ksiazek S, et al. Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant[J]. Water research, 2010, 44:5089-5097
    [13] Fuentefria D B, Ferreira A E, Corçáo G. Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: Are they genetically related? [J]. Journal of Environmental Management. 2011, 92:250-255
    [14] Duong H A, Pham N H, Nguyen H T. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam[J]. Chemosphere, 2008, 72:968-973
    [15] Schwartz T, Kohnen W, Jansen B, et al. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms[J]. FEMS Microbiol Ecol, 2003, 43:325-335
    [16] Volkmann H, Schwartz T, Bischoff P, et al. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan) [J]. J Microbiol Methods, 2004, 56:277-286
    [17] Ghosh S,Ramsden S J,Timothy M, et al. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants[J]. Appl Microbiol Biotechnol, 2009, 84:791-796
    [18] Chen J, Frederick C, Michel J R, et al. Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms[J]. Microb Ecol, 2010, 60:479-486
    [19] Martinez J L. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 2008, 321(5887):365-367
    [20] Knapp C W, Engemann C A, Hanson M L, et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures[J]. Environmental Science & Technology, 2008, 42(14):5348-5353
    [21] Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010, 44(18): 6933-6939
    [22] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225
    [23] Li J, Shao B, Shen J Z, et al. Occurrence of chloramphenicol-resistance genes as environmental pollutants from swine feedlots[J]. Environmental Science & Technology, 2013,47(6):2892-2897
    [24] Li J, Wang T, Shao B, et al. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: Potential transfer to agricultural lands[J]. Environmental Health Perspectives, 2012, 120(8):1144-1149
    [25] Davison J. Genetic Exchange between Bacteria in the Environment[J]. Plasmid, 1999, 42:73-91
    [26] Rahube T O, Yost C K, et al. Antibiotic resistance plasmids in wastewater treatment plants and their possible dissemination into the environment[J]. African Journal of Biotechnology, 2010, 9(54):9183-9190
    [27] Ferreira da S M, Tiago I, Verissimo A, et al. Antibiotic resistance of enterococci and related bacteria in an urban waste water treatment plant[J]. FEMS Microbiol Ecol, 2006, 55:322-329
    [28] Kim S, Jensen J N, Aga D S, et al. Tetracycline as a selector for resistant bacteria in activated sludge[J]. Chemosphere, 2007, 66:1643-1651
    [29] Schlüter A, Szczepanowski R, Pühler A, et al. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool[J]. FEMS Microbiology Review., 2007, 31:449-477
    [30] Eikmeyer F, Hadiati A, Szczepanowski R. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution[J]. Plasmid, 2012, 68:13-24
    [31] Iversen A, Kun I, Rahman M, et al. Evidence for transmission between humans and the environment of a nosocomial strain of Enterococcus faecium[J]. Environment Microbiology, 2004, 6:55-59
    [32] Mokracka J, Koczura R, Kaznowski A. Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant[J]. Water research, 2012, 46:3353 -3363
    [33] Tennstedt T, Szczepanowski R, Braun S, et al. Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant[J]. FEMS Microbiology Ecology, 2003, 45:239-252
    [34] Ramsden S J, Ghosh S, Bohl L J. Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media[J]. Journal of Applied Microbiology, 2010, 109:1609-1618
    [35] Soda S, Otsuki H, Inoue D, et al. Transfer of antibiotic multiresistant plasmid RP4 from Escherichia coli to activated sludge bacteria[J]. Journal of Bioscience and Bioengineering, 2008, 106(3):292-296
    [36] Merlin C, Bonot S, Courtois S. Persistence and dissemination of the multiple-antibioticresistance plasmid pB10 in the microbial communities of wastewater sludge microcosms[J]. Water Reseasch, 2011, 45:2897-2905
    [37] 王丽梅, 罗义, 毛大庆, 等. 抗生素抗性基因在环境中的传播扩散及抗性研究方法[J]. 应用生态学报, 2010, 21(4):1063-1069
    [38] Kim S, Park H, Chandran K. Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria:A mathematical modeling approach[J]. Chemosphere, 2010, 78(9):1071-1077
    [39] 马丽丽, 郭昌胜, 胡伟, 等. 固相萃取-高效液相色谱-串联质谱法同时测定土壤中氟喹诺酮、四环素和磺胺类抗生素[J]. 分析化学, 2010, 38(1):21-26
    [40] Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Science of the Total Environment, 2012, 421:173-183
    [41] Novo A, Célia M, Manaia. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants[J]. Appl Microbiol Biotechnol, 2010, 87:1157-1166
    [42] Diehl D L, Lapara T M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids[J]. Environmental Science & Technology, 2010, 44:9128-9133
    [43] Fan C A, He J Z. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O[J]. Water Research, 2011, 45:3098-3106
    [44] Largus T, Angenent M M, George U, et al. Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. Water Research, 2008, 42:2377-2384
    [45] Dodd, Michael C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment[J]. Journal of Environmental Monitoring, 2012, 14:1754-1771
    [46] Da Costa M P, Vaz-Pires P, Bernardo F. Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants [J]. Water Research, 2006, 40(8): 1735-1740
    [47] Huang J J, Hu H Y, Tang F. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant[J]. Water Research, 2011, 45:2775-2781
    [48] Shi P, Jia S, Zhang X X. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water[J]. Water Research, 2012, 47(1):111-120
    [49] Pei R, Cha J, Carlson K H, et al. Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water [J]. Environmental Science & Technology, 2007, 41(14):5108-5113
    [50] Ma Y, Wilson C A, Novak J T, et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons[J]. Environmental Science & Technology, 2011, 45:7855-7861
    [51] Engemann C A, Adams L, Knapp C W, et al. Disappearance of oxytetracycline resistance genes in aquatic systems[J]. FEMS Microbiol. Lett, 2006, 263(2):176-182
    [52] Engemann C A, Keen P L, Knapp C W, et al. Fate of tetracycline resistance genes in aquatic systems: Migration from the water column to peripheral biofilms [J]. Environmental Science & Technology, 2008, 42(14):5131-5136
    [53] 佟娟, 魏源送. 污水处理厂削减耐药菌与抗性基因的研究进展[J]. 环境科学学报, 2012, 32(11):2650-2659
    [54] Pruden A, Arabi M, Storteboom H N. Correlation between upstream human activities and riverine antibiotic resistance genes[J]. Environmental Science & Technology, 2012, 46(21):11541-11549
    [55] Chen J, Yu Z T, Michel F C, et al. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems[J]. Appl Environ Microbiol, 2007, 73:4407-4416
    [56] Da Silva M F, Vaz-Moreira I, Gonzalez-Pajuelo M, et al. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant[J]. FEMS Microbiol Ecol, 2007, 60:166-176
    [57] Taviani E, Ceccarelli D, Lazaro N, et al. Environmental Vibrio spp. isolated in monitoring and evaluation mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons[J]. FEMS Microbiol Ecol, 2008, 64:45-54
    [58] Li D, Yang M, Hu J Y, et al. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river[J]. Environmental Microbiology, 2009, 11(6):1506-1517
    [59] Castiglioni S, Pomati F, Miller K, et al. Novel homologs of the multiple resistance regulator marA in antibiotic-contaminated environments[J]. Water Research, 2008, 42:4281-4280
    [60] Koczura R, Mokracka J, Jabońska L, et al. Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water[J]. Science of the Total Environment, 2012, 414:680-685
    [61] Zhang Y L, Marrs C F, Simon C. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp.[J]. Science of the Total Environment, 2009, 407:3702-3706
    [62] Guardabassi L, Wong D M A L F, Dalsgaard A. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria[J]. Water Research,2002, 36:1955-1964
    [63] LaPara T M, Tucker R, Burzh P R, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into duluth-superior harbor[J]. Environmental Science & Technology, 2011, 45:9543-9549
    [64] Jacobs L, Chenia H Y. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. Isolated from South African aquaculture systems[J]. Int J Food Microbiol,2007: 114:295-306
    [65] Dang H Y, Zhang X X, Song L S, et al. Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes from mariculture waters of China[J]. Mar Pollut Bull, 2006, 52:1494-1503
    [66] Dang H Y, Zhang X X, Song L S,et al. Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China[J]. J Appl Microbiol, 2007, 103:2580-2592
    [67] Srinivasan V, Nam H M, Nguyen L T, et al. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms[J]. Foodborne Pathog Dis, 2005, 2:201-211
    [68] Henriques I S, Moura A, Alves A, et al. Analysing diversity among β-lactamase encoding genes in aquatic environments[J]. FEMS Microbiol Ecol, 2006, 56:418-429
    [69] West B M, Liggit P, Clemans D L, et al. Antibiotic resistance, gene transfer, and water quality patterns observed in waterways near CAFO farms and wastewater treatment facilities[J]. Water Air Soil Pollut, 2010, 217:473-489
    [70] Yang S, Carlson K. Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes[J]. Water Res, 2003, 37:4645-4656
    [71] Iversen A, Kühn I, Franklin A, et al. High prevalence of vancomycin-resistant enterococci in Swedish sewage[J]. Appl Environ Microbiol, 2002, 68:2838-2842
    [72] Caplin J L, Hanlon G W, Taylor H D. Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England[J]. Environ Microbiol, 2008, 10:885-892
    [73] Zhang T, Zhang M, Zhang X X. Tetracycline resistance genes and tetracycline resistant lactose-fermenting enterobacteriaceae in activated sludge of sewage treatment plants[J]. Environmental Science & Technology, 2009, 43(10):3455-3460
    [74] Szczepanowski R, Braun S, Riedel V, et al. The 120-592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions[J]. Microbiology, 2005, 151:1095-1111
    [75] Mokracka J, Koczura R, Jabon'ska L. Phylogenetic groups, virulence genes and quinolone resistance of integron-bearing Escherichia coli strains isolated from a wastewater treatment plant[J]. Original Paper, 2011, 99:817-824
    [76] Heberer T, Stan H J. Determination of clofibric acid and N-(phenylsulfonyl)-sarcosine in sewage, river, and drinking water[J]. International Journal of Environmental Analytical Chemistry, 1997, 67:113-124
    [77] Drewes J E, Heberer T, Reddersen K. Fate of pharmaceuticals during indirect potable reuse[J]. Water Science & Technology, 2002, 46:73-80
    [78] Carballa M, Omil F, Juan M. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant[J]. Water Research, 2004, 36:2918-2926
    [79] Faria C, Vaz-Moreira I, Serapicos E, et al. Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water[J]. Science of the Total Environment, 2009, 407:3876-3882
  • 加载中
计量
  • 文章访问数:  1779
  • HTML全文浏览数:  1693
  • PDF下载数:  1141
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-01-31
于帅, 李锦, 毛大庆, 罗义. 抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展[J]. 环境化学, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008
引用本文: 于帅, 李锦, 毛大庆, 罗义. 抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展[J]. 环境化学, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008
YU Shuai, LI Jin, MAO Daqing, LUO Yi. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater (sewage) treatment system[J]. Environmental Chemistry, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008
Citation: YU Shuai, LI Jin, MAO Daqing, LUO Yi. Sources, dissemination, fate and pollution control of antibiotic resistance genes in wastewater (sewage) treatment system[J]. Environmental Chemistry, 2013, 32(11): 2059-2071. doi: 10.7524/j.issn.0254-6108.2013.11.008

抗生素抗性基因在废(污)水处理系统的来源、传播扩散、归趋以及污染控制研究进展

  • 1.  南开大学环境科学与工程学院教育部环境污染过程与基准重点实验室, 天津, 300071;
  • 2.  天津大学环境科学与工程学院, 天津, 300072
基金项目:

国家环保公益项目(201309031);国家自然科学基金项目(31170472,31070333,31270542);教育部“新世纪”优秀人才基金资助(NCET-11-0254)。

摘要: 人类在生活生产中大量使用抗生素,使抗生素抗性菌(Antibiotic resistance bacteria,ARB)和抗性基因(Antibiotic resistance genes,ARGs)日益在环境中被检出.含有这些污染物的污水被污水处理系统(Wastewater treatment plants,WWTPs)所接纳,抗性细菌在处理系统内得以大量增殖,使得污水处理系统成为抗性细菌和抗性基因的重要储存库.由于污水处理系统对ARB和ARGs的处理效果并不理想,抗性基因随出水排放至纳污水体,会造成环境中抗性基因污染.本文总结并分析了抗生素抗性基因在污水处理系统中的来源、传播扩散途径、归趋以及污染控制的最新研究进展,提出了现存问题以及今后工作的重点,以期为ARGs的污染控制及消减提供可行性参考.

English Abstract

参考文献 (79)

返回顶部

目录

/

返回文章
返回