黄曲霉A5p1脱色糖蜜酒精废水机理初探

贺锴, 何小慧, 李必金, 邹成, 覃益民, 李青云, 刘幽燕. 黄曲霉A5p1脱色糖蜜酒精废水机理初探[J]. 环境化学, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002
引用本文: 贺锴, 何小慧, 李必金, 邹成, 覃益民, 李青云, 刘幽燕. 黄曲霉A5p1脱色糖蜜酒精废水机理初探[J]. 环境化学, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002
HE Kai, HE Xiaohui, LI Bijin, ZOU Cheng, QIN Yimin, LI Qingyun, LIU Youyan. Decolorization mechanism of molasses wastewater by Aspergillus flavus A5p1[J]. Environmental Chemistry, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002
Citation: HE Kai, HE Xiaohui, LI Bijin, ZOU Cheng, QIN Yimin, LI Qingyun, LIU Youyan. Decolorization mechanism of molasses wastewater by Aspergillus flavus A5p1[J]. Environmental Chemistry, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002

黄曲霉A5p1脱色糖蜜酒精废水机理初探

  • 基金项目:

    国家自然科学基金项目(21066001)资助.

Decolorization mechanism of molasses wastewater by Aspergillus flavus A5p1

  • Fund Project:
  • 摘要: 研究自行筛选的一株黄曲霉(Aspergillus flavus)A5p1(保藏号CGMCC.4292)对糖蜜酒精废水(MSW)的脱色机理.在外加蔗糖情况下菌株A5p1对MSW具有较好的脱色效果,脱色率由14%增高至58%;脱色进程与细胞生长基本同步.从培养液中检测出3种木质素过氧化物酶——漆酶(Lac)及两种胞外过氧化物酶即锰过氧化物酶(MnP)和不依赖锰的过氧化物酶(MiP)的酶活,但是水平不高,认为此3种酶不是主要的脱色机制.发现由各种代谢过程产生的总H2O2生成速率与脱色率基本同步,同时在第4天达到最大值,随后下降;还原糖总消耗也在初期阶段较快.外加蔗糖后总H2O2生成速率增加10倍,达到0.0027 mmol·min-1·mL-1.认为体系中脱色机制可能与产H2O2的酶相关. 紫外可见光谱分析和凝胶色谱分析表明脱色过程中有大分子物质降解. 综上所述初步认为,黄曲霉A5p1脱色糖蜜酒精废水是一个受产H2O2酶影响、复杂的生物降解过程.
  • 加载中
  • [1] 陈曦, 余志晟, 贺菲, 等. 酵母菌Y48对活性黑KN-B的脱色研究[J]. 环境化学, 2011, 30(3): 627-631
    [2] Pant D and A Adholeya. Biological approaches for treatment of distillery wastewater: A review[J]. Bioresource Technology, 2007, 98(12): 2321-2334
    [3] Miranda M P, Benito G C, Cristobal N S, et al. Color elimination from molasses wastewater by Aspergillus niger[J]. Bioresource Technology, 1965, 57(3): 229-235
    [4] Singh S S and Dikshit A K. Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride[J]. Journal of Hazardous Materials, 2010, 176(1/3):864-869
    [5] 李必金, 刘幽燕, 贺锴, 等. 糖蜜酒精废水脱色微生物的筛选及鉴定[J]. 环境科学, 2012, 33(9): 3228-3235
    [6] Ohmomo S, Kainuma M, Kamimura K, et al. Adsorption of melanoidin to the mycelia of Aspergillus oryzae Y-2-32[J]. Agricultural and Biological Chemistry, 1988, 52(2): 381-386
    [7] Blondeau R. Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology, 1989, 55(5): 1282-1285
    [8] Miyata N, Iwahori K, Fujita M. Manganese-independent and-dependent decolorization of melanoidin by extracellular hydrogen peroxide and peroxidases from Coriolus hirsutus pellets[J]. Journal of Fermentation and Bioengineering, 1998, 85(5): 550-553
    [9] Aoshima I, Tozawa Y, Ohmomo S, et al. Production of decolorizing activity for molasses pigment by Coriolus versicolor Ps4a[J]. Agricultural and Biological Chemistry 1985, 49(7): 2041-2045
    [10] Thakkar A P, Dhamankar V S, Kapadnis B P. Biocatalytic decolourisation of molasses by Phanerochaete chrysosporium[J]. Bioresource Technology, 2006, 97(12): 1377-1381
    [11] Pant D, Adholeya A. Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation[J]. Biodegradation, 2006, 18(5): 647-659
    [12] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 2002, 31(3): 426-428
    [13] Figaro S, Louisy-Louis S, Lambert J, et al. Adsorption studies of recalcitrant compounds of molasses spentwash on activated carbons[J]. Water Research, 2006, 40(18): 3456-3466
    [14] Nakajima-Kambe T, Shimomura M, Nomura N, et al. Decolorization of molasses wastewater by Bacillus sp. under thermophilic and anaerobic conditions[J]. Journal of Bioscience and Bioengineering, 1999, 87(1): 119-121
    [15] Ohmomo S, Kaneko Y, Sirianuntapiboon S, et al. Decolorization of molasses waste-water by a thermophilic strain, Aspergillus fumigatus G-2-6[J]. Agricultural and Biological Chemistry, 1987, 51(12): 3339-3346.
    [16] Guimarães C, Bento L S M, and Mota M, Biodegradation of colorants in refinery effluents: Potential use of the fungus Phanerochaete chrysosporium[J]. International Sugar Journal, 1999, 101(1205): 285-290
    [17] Sirianuntapiboon S, Sihanonth Prakitsin, Somchai Praphaisri, et al. An absorption mechanism for the decolorization of melanoidin by Rhizoctonia sp. D-90[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(7): 1185-1189
    [18] Miyata N, Toru M, Keisuke I, Masanori F, Microbial decolorization of melanoidin-containing wastewaters: Combined use of activated sludge and the fungus Coriolus hirsutus[J]. Journal of Bioscience and Bioengineering, 2000, 89(2): 145-150
    [19] 侯红漫, 蒋姣姣. 白腐菌Pleurotus ostreatus漆酶的生产及其最佳诱导条件[J]. 大连轻工业学院学报, 2003, 22(1): 29-32
    [20] González T, Maria C T, Susana Y, et al. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62[J]. Research in Microbiology, 2008, 159(2): 103-109
    [21] 李惠蓉. 白腐真菌生物学和生物技术[M]. 北京:化学工业出版社, 2005
    [22] Hayase F, Kim S B, Kato H. Decolorization and degradation products of the melanoidins by hydrogen peroxide[J]. Agricultural and Biological Chemistry, 1984, 48(11): 2711-2717
  • 加载中
计量
  • 文章访问数:  1063
  • HTML全文浏览数:  1063
  • PDF下载数:  556
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-01
贺锴, 何小慧, 李必金, 邹成, 覃益民, 李青云, 刘幽燕. 黄曲霉A5p1脱色糖蜜酒精废水机理初探[J]. 环境化学, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002
引用本文: 贺锴, 何小慧, 李必金, 邹成, 覃益民, 李青云, 刘幽燕. 黄曲霉A5p1脱色糖蜜酒精废水机理初探[J]. 环境化学, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002
HE Kai, HE Xiaohui, LI Bijin, ZOU Cheng, QIN Yimin, LI Qingyun, LIU Youyan. Decolorization mechanism of molasses wastewater by Aspergillus flavus A5p1[J]. Environmental Chemistry, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002
Citation: HE Kai, HE Xiaohui, LI Bijin, ZOU Cheng, QIN Yimin, LI Qingyun, LIU Youyan. Decolorization mechanism of molasses wastewater by Aspergillus flavus A5p1[J]. Environmental Chemistry, 2014, 33(6): 1027-1032. doi: 10.7524/j.issn.0254-6108.2014.06.002

黄曲霉A5p1脱色糖蜜酒精废水机理初探

  • 1.  广西大学化学化工学院, 南宁, 530004;
  • 2.  广西生物炼制重点实验室, 南宁, 530003
基金项目:

国家自然科学基金项目(21066001)资助.

摘要: 研究自行筛选的一株黄曲霉(Aspergillus flavus)A5p1(保藏号CGMCC.4292)对糖蜜酒精废水(MSW)的脱色机理.在外加蔗糖情况下菌株A5p1对MSW具有较好的脱色效果,脱色率由14%增高至58%;脱色进程与细胞生长基本同步.从培养液中检测出3种木质素过氧化物酶——漆酶(Lac)及两种胞外过氧化物酶即锰过氧化物酶(MnP)和不依赖锰的过氧化物酶(MiP)的酶活,但是水平不高,认为此3种酶不是主要的脱色机制.发现由各种代谢过程产生的总H2O2生成速率与脱色率基本同步,同时在第4天达到最大值,随后下降;还原糖总消耗也在初期阶段较快.外加蔗糖后总H2O2生成速率增加10倍,达到0.0027 mmol·min-1·mL-1.认为体系中脱色机制可能与产H2O2的酶相关. 紫外可见光谱分析和凝胶色谱分析表明脱色过程中有大分子物质降解. 综上所述初步认为,黄曲霉A5p1脱色糖蜜酒精废水是一个受产H2O2酶影响、复杂的生物降解过程.

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回