生物模板法制备纳米羟基磷灰石去除水体中的三氯生

赵婷婷, 沈秋莹, 丁怡然, 罗玉, 李强, 展巨宏, 蔡倩, 陈波, 蒋峰芝, 潘学军. 生物模板法制备纳米羟基磷灰石去除水体中的三氯生[J]. 环境化学, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015
引用本文: 赵婷婷, 沈秋莹, 丁怡然, 罗玉, 李强, 展巨宏, 蔡倩, 陈波, 蒋峰芝, 潘学军. 生物模板法制备纳米羟基磷灰石去除水体中的三氯生[J]. 环境化学, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015
ZHAO Tingting, SHEN Qiuying, DING Yiran, LUO Yu, LI Qiang, ZHAN Juhong, CAI Qian, CHEN Bo, JANG Fengzhi, PAN Xuejun. Removal of triclosan by nano-HAP synthesized by biotemplate technology[J]. Environmental Chemistry, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015
Citation: ZHAO Tingting, SHEN Qiuying, DING Yiran, LUO Yu, LI Qiang, ZHAN Juhong, CAI Qian, CHEN Bo, JANG Fengzhi, PAN Xuejun. Removal of triclosan by nano-HAP synthesized by biotemplate technology[J]. Environmental Chemistry, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015

生物模板法制备纳米羟基磷灰石去除水体中的三氯生

  • 基金项目:

    国家自然科学基金(21163023,21307048)资助.

Removal of triclosan by nano-HAP synthesized by biotemplate technology

  • Fund Project:
  • 摘要: 以棉花作为生物模板制备出具有棉花形貌的纳米羟基磷灰石(HAP),并将其运用于水体中三氯生的吸附去除研究。采用X射线粉末衍射仪、傅里叶红外、扫描电镜、透射电镜表征了吸附前后HAP的物相组成、官能团、形貌和颗粒尺寸变化。考察了初始pH、时间和温度对HAP吸附三氯生的影响。动力学数据符合准二级动力学模型,颗粒内扩散不是唯一的限速步骤;平衡吸附数据符合Langmuir等温吸附模型;热力学参数吉布斯自由能(ΔG0)、焓变(ΔH0)、熵变(ΔS0)值揭示三氯生吸附至HAP上是一个自发吸热的过程。对比其他吸附剂,HAP具有高吸附量且环境友好的优势。
  • 加载中
  • [1] McAvoy D C, Schatowitz B, Jacob M, et al. Measurement of triclosan in wastewater treatment systems[J]. Environmental Toxicology And Chemistry, 2002, 21(7): 1323-1329
    [2] Adolfsson-Erici M, Pettersson M, Parkkonen J, et al. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden[J]. Chemosphere, 2002, 46(9): 1485-1489
    [3] Hinther A, Bromba C M, Wulff J E, et al. Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems[J]. Environ Sci Technol, 2011, 45(12): 5395-5402
    [4] Heath R J, Rubin J R, Holland D R, et al. Mechanism of triclosan inhibition of bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 1999, 274(16): 11110-11114
    [5] Heath R J, Rock C O. Microbiology: A triclosan-resistant bacterial enzyme[J]. Nature, 2000, 406(6792): 145-146
    [6] Sabaliunas D, Webb S F, Hauk A, et al. Environmental fate of triclosan in the River Aire Basin, UK[J]. Water Research, 2003, 37(13): 3145-3154
    [7] Sanchez-Prado L, Llompart M, Lores M, et al. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction[J]. Chemosphere, 2006, 65(8): 1338-1347
    [8] Morrall D, McAvoy D, Schatowitz B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX)[J]. Chemosphere, 2004, 54(5): 653-660
    [9] Aranami K, Readman J W. Photolytic degradation of triclosan in freshwater and seawater[J]. Chemosphere, 2007, 66(6): 1052-1056
    [10] Dayan A. Risk assessment of triclosan in human breast milk[J]. Food and chemical toxicology, 2007, 45(1): 125-129
    [11] Anger C T, Sueper C, Blumentritt D J, et al. Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores[J]. Environ Sci Technol, 2013, 47(4): 1833-1843
    [12] Ying G G, Kookana R S. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants[J]. Environment International, 2007, 33(2): 199-205
    [13] Buth J M, Ross M R, McNeill K, et al. Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection[J]. Chemosphere, 2011, 85(2): 284-289
    [14] 林晖. 鼠李糖脂对三氯生在水/底泥中分配的作用[D]. 广州:华南理工大学硕士学位论文, 2011
    [15] Crofton K M, Paul K B, DeVito M J, et al. Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine[J]. Environmental Toxicology and Pharmacology, 2007, 24(2): 194-197
    [16] Cha J, Cupples A M. Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils[J]. Chemosphere, 2010, 81(4): 494-499
    [17] Cherednichenko G, Zhang R, Bannister R A, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle[J]. Proceedings of the National Academy of Sciences, 2012, 109(35): 14158-14163
    [18] Chen X, Nielsen J L, Furgal K, et al. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions[J]. Chemosphere, 2011, 84(4): 452-456
    [19] Lei C, Hu Y Y, He M Z. Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites[J]. Chemical Engineering Journal, 2013, 219: 361-370
    [20] Behera S K, Oh S Y, Park H S. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid[J]. Journal of hazardous materials, 2010, 179(1): 684-691
    [21] López-Morales J, Perales-Pérez O, Román-Velázquez F. Sorption of triclosan onto tyre crumb rubber[J]. Adsorption Science Technology, 2012, 30(10): 831-846
    [22] Kaludjerovic-Radoicic T, Raicevic S. Aqueous Pb sorption by synthetic and natural apatite: Kinetics, equilibrium and thermodynamic studies[J]. Chemical Engineering Journal, 2010, 160(2): 503-510
    [23] Corami A, Mignardi S, Ferrini V. Cadmium removal from single-and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite[J]. Journal of colloid and interface science, 2008, 317(2): 402-408
    [24] Feng Y, Gong J L, Zeng G M, et al. Adsorption of Cd (Ⅱ) and Zn (Ⅱ) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chemical Engineering Journal, 2010, 162(2): 487-494
    [25] Bahdod A, El Asri S, Saoiabi A, et al. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: Kinetic process and impact of the surface properties[J]. Water Research, 2009, 43(2): 313-318
    [26] Bouyarmane H, Asri S E, Rami A, et al. Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: Influence of porosity and surface interactions[J]. Journal of hazardous materials, 2010, 181(1): 736-741
    [27] Barka N, Qourzal S, Assabbane A, et al. Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite[J]. Journal of Environmental Sciences, 2008, 20(10): 1268-1272
    [28] Sotiropoulou S, Sierra-Sastre Y, Mark S S, et al. Biotemplated Nanostructured Materials[J]. Chemistry of Materials, 2008, 20(3): 821-834
    [29] Jiménez-Reyes M, Solache-Ríos M. Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite[J]. Journal of hazardous materials, 2010, 180(1): 297-302
    [30] Sundaram C S, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies[J]. Journal of Hazardous Materials, 2008, 155(1): 206-215
    [31] Ghanizadeh G, Asgari G. Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102(1): 127-142
    [32] Nikolenko N, Esajenko E. Surface properties of synthetic calcium hydroxyapatite[J]. Adsorption Science Technology, 2005, 23(7): 543-553
    [33] Pan B, Sun K, Xing B. Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. Ⅱ. Concentration-dependence[J]. J Soils Sediments, 2010, 10(5): 845-854
    [34] Mourabet M, Boujaady H El, Rhilassi A El, et al. Defluoridation of water using Brushite: Equilibrium, kinetic and thermodynamic studies[J]. Desalination, 2011, 278(1): 1-9
    [35] Senturk H B, Ozdes D, Gundogdu A, et al. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study[J]. Journal of Hazardous Materials, 2009, 172(1): 353-362
    [36] Özacar M, Şengil I A. Adsorption of reactive dyes on calcined alunite from aqueous solutions[J]. Journal of hazardous materials, 2003, 98(1): 211-224
    [37] Zhou S, Shao Y, Gao N, et al. Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes[J]. CLEAN–Soil, Air, Water, 2013, 41(6): 539-547
    [38] Cho H H, Huang H, Schwab K. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes[J]. Langmuir, 2011, 27(21): 12960-12967
  • 加载中
计量
  • 文章访问数:  942
  • HTML全文浏览数:  942
  • PDF下载数:  936
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-19
赵婷婷, 沈秋莹, 丁怡然, 罗玉, 李强, 展巨宏, 蔡倩, 陈波, 蒋峰芝, 潘学军. 生物模板法制备纳米羟基磷灰石去除水体中的三氯生[J]. 环境化学, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015
引用本文: 赵婷婷, 沈秋莹, 丁怡然, 罗玉, 李强, 展巨宏, 蔡倩, 陈波, 蒋峰芝, 潘学军. 生物模板法制备纳米羟基磷灰石去除水体中的三氯生[J]. 环境化学, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015
ZHAO Tingting, SHEN Qiuying, DING Yiran, LUO Yu, LI Qiang, ZHAN Juhong, CAI Qian, CHEN Bo, JANG Fengzhi, PAN Xuejun. Removal of triclosan by nano-HAP synthesized by biotemplate technology[J]. Environmental Chemistry, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015
Citation: ZHAO Tingting, SHEN Qiuying, DING Yiran, LUO Yu, LI Qiang, ZHAN Juhong, CAI Qian, CHEN Bo, JANG Fengzhi, PAN Xuejun. Removal of triclosan by nano-HAP synthesized by biotemplate technology[J]. Environmental Chemistry, 2014, 33(6): 1018-1026. doi: 10.7524/j.issn.0254-6108.2014.06.015

生物模板法制备纳米羟基磷灰石去除水体中的三氯生

  • 1.  昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2.  云南大学化学科学与工程学院, 昆明, 650091
基金项目:

国家自然科学基金(21163023,21307048)资助.

摘要: 以棉花作为生物模板制备出具有棉花形貌的纳米羟基磷灰石(HAP),并将其运用于水体中三氯生的吸附去除研究。采用X射线粉末衍射仪、傅里叶红外、扫描电镜、透射电镜表征了吸附前后HAP的物相组成、官能团、形貌和颗粒尺寸变化。考察了初始pH、时间和温度对HAP吸附三氯生的影响。动力学数据符合准二级动力学模型,颗粒内扩散不是唯一的限速步骤;平衡吸附数据符合Langmuir等温吸附模型;热力学参数吉布斯自由能(ΔG0)、焓变(ΔH0)、熵变(ΔS0)值揭示三氯生吸附至HAP上是一个自发吸热的过程。对比其他吸附剂,HAP具有高吸附量且环境友好的优势。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回