[1]
|
McAvoy D C, Schatowitz B, Jacob M, et al. Measurement of triclosan in wastewater treatment systems[J]. Environmental Toxicology And Chemistry, 2002, 21(7): 1323-1329
|
[2]
|
Adolfsson-Erici M, Pettersson M, Parkkonen J, et al. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden[J]. Chemosphere, 2002, 46(9): 1485-1489
|
[3]
|
Hinther A, Bromba C M, Wulff J E, et al. Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems[J]. Environ Sci Technol, 2011, 45(12): 5395-5402
|
[4]
|
Heath R J, Rubin J R, Holland D R, et al. Mechanism of triclosan inhibition of bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 1999, 274(16): 11110-11114
|
[5]
|
Heath R J, Rock C O. Microbiology: A triclosan-resistant bacterial enzyme[J]. Nature, 2000, 406(6792): 145-146
|
[6]
|
Sabaliunas D, Webb S F, Hauk A, et al. Environmental fate of triclosan in the River Aire Basin, UK[J]. Water Research, 2003, 37(13): 3145-3154
|
[7]
|
Sanchez-Prado L, Llompart M, Lores M, et al. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction[J]. Chemosphere, 2006, 65(8): 1338-1347
|
[8]
|
Morrall D, McAvoy D, Schatowitz B, et al. A field study of triclosan loss rates in river water (Cibolo Creek, TX)[J]. Chemosphere, 2004, 54(5): 653-660
|
[9]
|
Aranami K, Readman J W. Photolytic degradation of triclosan in freshwater and seawater[J]. Chemosphere, 2007, 66(6): 1052-1056
|
[10]
|
Dayan A. Risk assessment of triclosan in human breast milk[J]. Food and chemical toxicology, 2007, 45(1): 125-129
|
[11]
|
Anger C T, Sueper C, Blumentritt D J, et al. Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores[J]. Environ Sci Technol, 2013, 47(4): 1833-1843
|
[12]
|
Ying G G, Kookana R S. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants[J]. Environment International, 2007, 33(2): 199-205
|
[13]
|
Buth J M, Ross M R, McNeill K, et al. Removal and formation of chlorinated triclosan derivatives in wastewater treatment plants using chlorine and UV disinfection[J]. Chemosphere, 2011, 85(2): 284-289
|
[14]
|
林晖. 鼠李糖脂对三氯生在水/底泥中分配的作用[D]. 广州:华南理工大学硕士学位论文, 2011
|
[15]
|
Crofton K M, Paul K B, DeVito M J, et al. Short-term in vivo exposure to the water contaminant triclosan: Evidence for disruption of thyroxine[J]. Environmental Toxicology and Pharmacology, 2007, 24(2): 194-197
|
[16]
|
Cha J, Cupples A M. Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils[J]. Chemosphere, 2010, 81(4): 494-499
|
[17]
|
Cherednichenko G, Zhang R, Bannister R A, et al. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle[J]. Proceedings of the National Academy of Sciences, 2012, 109(35): 14158-14163
|
[18]
|
Chen X, Nielsen J L, Furgal K, et al. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions[J]. Chemosphere, 2011, 84(4): 452-456
|
[19]
|
Lei C, Hu Y Y, He M Z. Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites[J]. Chemical Engineering Journal, 2013, 219: 361-370
|
[20]
|
Behera S K, Oh S Y, Park H S. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid[J]. Journal of hazardous materials, 2010, 179(1): 684-691
|
[21]
|
López-Morales J, Perales-Pérez O, Román-Velázquez F. Sorption of triclosan onto tyre crumb rubber[J]. Adsorption Science Technology, 2012, 30(10): 831-846
|
[22]
|
Kaludjerovic-Radoicic T, Raicevic S. Aqueous Pb sorption by synthetic and natural apatite: Kinetics, equilibrium and thermodynamic studies[J]. Chemical Engineering Journal, 2010, 160(2): 503-510
|
[23]
|
Corami A, Mignardi S, Ferrini V. Cadmium removal from single-and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite[J]. Journal of colloid and interface science, 2008, 317(2): 402-408
|
[24]
|
Feng Y, Gong J L, Zeng G M, et al. Adsorption of Cd (Ⅱ) and Zn (Ⅱ) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. Chemical Engineering Journal, 2010, 162(2): 487-494
|
[25]
|
Bahdod A, El Asri S, Saoiabi A, et al. Adsorption of phenol from an aqueous solution by selected apatite adsorbents: Kinetic process and impact of the surface properties[J]. Water Research, 2009, 43(2): 313-318
|
[26]
|
Bouyarmane H, Asri S E, Rami A, et al. Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: Influence of porosity and surface interactions[J]. Journal of hazardous materials, 2010, 181(1): 736-741
|
[27]
|
Barka N, Qourzal S, Assabbane A, et al. Adsorption of disperse blue SBL dye by synthesized poorly crystalline hydroxyapatite[J]. Journal of Environmental Sciences, 2008, 20(10): 1268-1272
|
[28]
|
Sotiropoulou S, Sierra-Sastre Y, Mark S S, et al. Biotemplated Nanostructured Materials[J]. Chemistry of Materials, 2008, 20(3): 821-834
|
[29]
|
Jiménez-Reyes M, Solache-Ríos M. Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite[J]. Journal of hazardous materials, 2010, 180(1): 297-302
|
[30]
|
Sundaram C S, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies[J]. Journal of Hazardous Materials, 2008, 155(1): 206-215
|
[31]
|
Ghanizadeh G, Asgari G. Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102(1): 127-142
|
[32]
|
Nikolenko N, Esajenko E. Surface properties of synthetic calcium hydroxyapatite[J]. Adsorption Science Technology, 2005, 23(7): 543-553
|
[33]
|
Pan B, Sun K, Xing B. Adsorption kinetics of 17α-ethinyl estradiol and bisphenol A on carbon nanomaterials. Ⅱ. Concentration-dependence[J]. J Soils Sediments, 2010, 10(5): 845-854
|
[34]
|
Mourabet M, Boujaady H El, Rhilassi A El, et al. Defluoridation of water using Brushite: Equilibrium, kinetic and thermodynamic studies[J]. Desalination, 2011, 278(1): 1-9
|
[35]
|
Senturk H B, Ozdes D, Gundogdu A, et al. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study[J]. Journal of Hazardous Materials, 2009, 172(1): 353-362
|
[36]
|
Özacar M, Şengil I A. Adsorption of reactive dyes on calcined alunite from aqueous solutions[J]. Journal of hazardous materials, 2003, 98(1): 211-224
|
[37]
|
Zhou S, Shao Y, Gao N, et al. Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes[J]. CLEAN–Soil, Air, Water, 2013, 41(6): 539-547
|
[38]
|
Cho H H, Huang H, Schwab K. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes[J]. Langmuir, 2011, 27(21): 12960-12967
|