化学品多介质逸度模型软件研究进展

刘丹, 张圣虎, 刘济宁, 丁洁, 石利利, 姚成. 化学品多介质逸度模型软件研究进展[J]. 环境化学, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006
引用本文: 刘丹, 张圣虎, 刘济宁, 丁洁, 石利利, 姚成. 化学品多介质逸度模型软件研究进展[J]. 环境化学, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006
LIU Dan, ZHANG Shenghu, LIU Jining, DING Jie, SHI Lili, YAO Cheng. Studies on software for multimedia fugacity models of chemicals[J]. Environmental Chemistry, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006
Citation: LIU Dan, ZHANG Shenghu, LIU Jining, DING Jie, SHI Lili, YAO Cheng. Studies on software for multimedia fugacity models of chemicals[J]. Environmental Chemistry, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006

化学品多介质逸度模型软件研究进展

  • 基金项目:

    国家高技术研究发展计划(863计划)(2013AA06A308)资助.

Studies on software for multimedia fugacity models of chemicals

  • Fund Project:
  • 摘要: 因化学品而产生的环境和健康问题日益引起人们的广泛关注,由于大多数化学品存在剂量-效应关系,使得化学品的暴露水平直接影响其在环境介质中的生态效应,多介质模型可以预测化学品在环境各介质中的浓度水平,为预防和控制化学品的生态风险提供理论支撑.本文详细调查了近年来基于逸度理论开发的多介质模型软件的应用状况,分析和总结了常用逸度模型软件的功能、特点、应用领域等,并展望了化学品多介质模型逸度软件的发展趋势,以期为化学品的环境风险评价和环境管理提供技术参考.
  • 加载中
  • [1] EMEA. Committee for Medicinal Products for Veterinary Use (CVMP):Guideline on Environmental Impact Assessment for Veterinary Medicinal Products PhaseⅡ[R]. European Medicines Agency Veterinary Medicines and Inspections, London, UK, 2004a
    [2] EMEA. Committee for Medicinal Products for Human Use (CHMP):Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use[R]. European Medicines Agency Pre-Authorization Evaluation of Medicines for Human Use, London, UK, 2004b
    [3] Mackay D. Multimedia environment models:The fugacity approach (Second edition)[M]. Boca Raton:Lewis Publishers, 2001:1-141
    [4] Dai S G, Huang G L, Lei H X. The multimedia modelof tributyltin chloride in a unit world[J]. Toxicological and Environmental Chemistry, 1995, 49(1/2):61-71
    [5] Brandes L J, Hollander H, Van de Meent D. SimpleBox 2.0:A nested multimedia fate model for evaluating the environment fate for chemicals. RIVM Report 719101029[R]. 1996, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
    [6] Leeuwen V, Vermeire. Risk assessment of chemicals:An introduction (Second edition)[M]. The Netherlands:Springer, 2007:131-138
    [7] Frank Wania, Donald Mackay. A global distribution model for persistent organic chemicals[J]. Science of Total Environment, 1995, (160/161): 211-232
    [8] 曹红英, 曹军.天津地区六六六的归宿和跨界面迁移[J].环境化学, 2003, 22(6):548-554
    [9] Campfens J, Mackay D. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs[J]. Environmental Science and Technology, 1997, 31(2):577-583
    [10] Rebecca L, Kenneth L, Lisa D. A model of fate of polycyclic aromatic hydrocarbons in the Saguenay Fjord, Canada[J]. Environmental Toxicology and Chemistry, 1998, 17(2):333-341
    [11] Morten S, Jlling J. Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics[J]. Chemosphere, 1998, 37(1):41-62
    [12] Rongrong Z, Chesheng Z. Review of environmental multimedia models[J]. Environmental Forensics, 2012, 13(3):216-224
    [13] Den Hollander H, Ferd S. Spatial variance in multimedia mass balance models:Comparison of LOTOS-EUROS and SimpleBox for PCB-153[J]. Chemosphere, 2007, 68:1318-1326
    [14] 董玉瑛, 雷炳莉.多介质空间分异模型的研究进展[J].哈尔滨工业大学学报, 2006, 11(38):1876-1880
    [15] Bilitewski B. Global risk-based management of chemical additives Ⅱ: Risk-based assessment and management strategies[J]. Hdb Env Chem, 2013, 23:47-72
    [16] Den Hollander H, Van Eijkeren J, Meent D. SimpleBox 3.0:Multimedia mass balance model for evaluating the fate of chemical in the environment RIVM Report 601200003/2004[R]. 2004, National Institute for Public Health and the Environment (RIVM). Bilthoven, The Netherlands
    [17] Brandes LJ, Den Hollander H, Meent D. SimpleBox 2.0:A nested multimedia fate model for evaluating the environment fate for chemicals. RIVM Report 719101029[R]. 1996. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
    [18] Mara H, Mark A J, Huijbregts, et al. Model and input uncertainty in multi-media fate modeling:Benzo[a]pyrene concentrations in Europe[J]. Chemosphere, 2008, 72:959-967
    [19] Hollander A, Hauck M, Cousins I T, et al. Assessing the relative importance of spatial variability in emissions versus landscape properties in fate models for environmental exposure assessment of chemicals[J]. Environ Model Assess, 2012, 17:577-587
    [20] Webster E, Taolian Li, Mackay D. Application of the quantitative water air sediment interaction (QWASI) model to the Great Lakes. CEMC Report No. 200501[R]. Trent University, Peterborough, Ontario
    [21] Woodne D G, Seth R, Mackay D, et al. Simulating the response of metal contaminated lakes to reductions in atmospheric loading using a modiled QWASI model[J]. Chemosphere, 2000, 41:1377-1388
    [22] Christopher S, Warren S, Mackay D, et al. A suite of multi-segment fugacity models describing the fate of organic contaminants in aquatic systems:application to the Rihand Reservoir, India[J]. Water Research, 2002, 36:4341-4355
    [23] Whelan M J. Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model[J]. Chemosphere, 2013, 91:1566-1576
    [24] Tong Y D, Zhang W, Wang X J, et al. Fate modeling of mercury species andfluxes estimation in an urban river[J]. Environmental Pollution, 2014, 184:54-61
    [25] Xua F, Qin N, Tao S, et al. Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China[J]. Ecological Modelling, 2013, 252:246-257
    [26] McKone T E, Enoch K G. CalTOX trademark:A multimedia total exposure model spreadsheet user's guide[R]. Ernest Orlando Lawrence Berkeley national laboratory:The U.S. Environmental Protection Agency National Exposure Research Laboratory, 2002
    [27] Hertwic E G, Mckone T E. Pollutant-specific scale of multimedia models and its implications for the potential dose[J]. Environment Science and Technology, 2001, 35:142-148
    [28] 贾晓洋, 姜林, 夏天翔, 等.RBCA、CLEA及CalTOX模型在苯并[a]芘污染场地健康风险评估中的应用比较[J].生态毒理学报, 2012, 7(3):277-284
    [29] Suciu N, Tanaka T, Trevisan M, et al. Environmental fate models[J]. Handbook of Environmental Chemistry, 2013, 23:47-72
    [30] Webster E, Mackay D, Di Guardo A, et al. Regional differences in Chemical fate model outcome[J]. Chemosphere, 2004, 55:1361-1376
    [31] Satoshi Managaki, Iku Enomoto, Shigeki Masunaga. Sources and distribution of hexabromocyclododecanes (HBCDs) in Japanese river sediment[J]. Journal of Environmental Monitoring, 2012, 14:901-907
    [32] Melissa M, Davide G, Antonio D, et a1. Modeling short-term variability of semivolatile organic chemicals in air at a local scale: An integrated modeling approach[J].Environmental Pollution, 2011, 159:1406-1412
    [33] 汤亚飞, 王焰新, 蔡鹤生.地表水环境中农药迁移与归宿[J].武汉化工学院学报, 2005, 27(4):13-15
    [34] Hughes L, Mackay D, David E. An updated state of the science EQC model for evaluating chemical fate in the environment: Application to D5 (decamethylcyclopentasiloxane)[J].Chemosphere, 2012, 87:118-124
    [35] In-Sun P, Jae-Woo P. A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for petroleum hydrocarbon-contaminated site management[J].Journal of Hazardous Materials, 2010, 179:1128-1135
    [36] Lammel G, Klopffer W, Semeena V, et al. Multicompartmental fate of persistent substances:Comparison of predictions from multimedia box models and a multicompartment chemistry-atmospheric transport model[J]. Environmental Science and Pollution Research, 2007, 14 (3):153-165
    [37] Wegmann F, Moller M, Scheringer M, et al. Influence of vegetation on the environmental partitioning of DDT in two global multimedia models[J]. Environmental Science and Technology, 2004, 38:1505-1512
    [38] Wegmann F, Cavin L, MacLeod M, et al. The OECD software tool for screening chemicals for persistence and long-range transport potential[J]. Environmental Modelling and Software, 2009, 24:228-237
    [39] Lammel G, Klopffer W, Semeena VS, et al. Multicompartmental fate of persistent substances. Comparison of prediction from multimedia box models and a multicompartment chemistry-atmospheric transport model[J]. Environmental Science and Pollution Research, 2004, 14 (3):153-165
    [40] Toose L, Woodfine D, Mackay D, et al. BETR-World: A geographically explicit mode of chemical fate: Application to transport of α-HCH to the Arctic[J]. Environmental Pollution, 2004, 128:223-240
    [41] MacLeod M, Woodfine D, Mackay D, et al. BETR North America:A regionally segmented multimedia contaminant fate model for North America[J]. Environmental Science and Pollution Research, 2001, 8:156-163
    [42] Liu S J, Lu Y L, Wang T Y, et al. Using gridded multimedia model to simulate spatial fate of Benzo[a] pyrene on regional scale[J]. Environment International, 2014, 63:53-63
    [43] Zhang Q, Crittenden J C, Shonnard D, et al. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region[J]. Chemosphere, 2003, 50:1377-1397
    [44] Shonnard DR, Hiew DS. Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream[J]. Environmental Science and Technology, 2000, 34(24):5222-5228
    [45] Qiong Z, John C, Crittenden, et al. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region[J]. Chemosphere, 2003, 50 (10):1377-1397
    [46] Seuntjens P, Steurbaut W, Vangronsve J. Chain model for the impact analysis of contaminants in primary food products[R]. Study Report of the Belgian Science Policy, 2006, CP-27
    [47] Virginia L, Stephen P., BinksMichael J. Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment[J]. Regulatory Toxicology and Pharmacology, 2009, 53:39-45
    [48] Tanaka T, Ciffroy P, Stenberg K, et al. Regression approaches to derive generic and fish group-specific probability density functions of bio-concentration factors for metals[J]. Environmental Toxicology and Chemistry, 2010, 29(11):2417-2425
    [49] Ciffroy P, Tanaka T, Johansson E, et al. Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water Environ[J]. Environmental Geochemistry and Health, 2011, 33:371-387
    [50] Olivier J, Manuele M, Raphael C, et al. IMPACT 2002+:A new life cycle impact assessment methodology[J]. The International Journal of Life Cycle Assessment. 2003, 8 (6):324 -330
  • 加载中
计量
  • 文章访问数:  1695
  • HTML全文浏览数:  1694
  • PDF下载数:  1612
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-09-18
刘丹, 张圣虎, 刘济宁, 丁洁, 石利利, 姚成. 化学品多介质逸度模型软件研究进展[J]. 环境化学, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006
引用本文: 刘丹, 张圣虎, 刘济宁, 丁洁, 石利利, 姚成. 化学品多介质逸度模型软件研究进展[J]. 环境化学, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006
LIU Dan, ZHANG Shenghu, LIU Jining, DING Jie, SHI Lili, YAO Cheng. Studies on software for multimedia fugacity models of chemicals[J]. Environmental Chemistry, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006
Citation: LIU Dan, ZHANG Shenghu, LIU Jining, DING Jie, SHI Lili, YAO Cheng. Studies on software for multimedia fugacity models of chemicals[J]. Environmental Chemistry, 2014, 33(6): 891-900. doi: 10.7524/j.issn.0254-6108.2014.06.006

化学品多介质逸度模型软件研究进展

  • 1.  南京工业大学理学院, 南京, 210009;
  • 2.  环境保护部南京环境科学研究所, 南京, 210042
基金项目:

国家高技术研究发展计划(863计划)(2013AA06A308)资助.

摘要: 因化学品而产生的环境和健康问题日益引起人们的广泛关注,由于大多数化学品存在剂量-效应关系,使得化学品的暴露水平直接影响其在环境介质中的生态效应,多介质模型可以预测化学品在环境各介质中的浓度水平,为预防和控制化学品的生态风险提供理论支撑.本文详细调查了近年来基于逸度理论开发的多介质模型软件的应用状况,分析和总结了常用逸度模型软件的功能、特点、应用领域等,并展望了化学品多介质模型逸度软件的发展趋势,以期为化学品的环境风险评价和环境管理提供技术参考.

English Abstract

参考文献 (50)

返回顶部

目录

/

返回文章
返回