[1]
|
EMEA. Committee for Medicinal Products for Veterinary Use (CVMP):Guideline on Environmental Impact Assessment for Veterinary Medicinal Products PhaseⅡ[R]. European Medicines Agency Veterinary Medicines and Inspections, London, UK, 2004a
|
[2]
|
EMEA. Committee for Medicinal Products for Human Use (CHMP):Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use[R]. European Medicines Agency Pre-Authorization Evaluation of Medicines for Human Use, London, UK, 2004b
|
[3]
|
Mackay D. Multimedia environment models:The fugacity approach (Second edition)[M]. Boca Raton:Lewis Publishers, 2001:1-141
|
[4]
|
Dai S G, Huang G L, Lei H X. The multimedia modelof tributyltin chloride in a unit world[J]. Toxicological and Environmental Chemistry, 1995, 49(1/2):61-71
|
[5]
|
Brandes L J, Hollander H, Van de Meent D. SimpleBox 2.0:A nested multimedia fate model for evaluating the environment fate for chemicals. RIVM Report 719101029[R]. 1996, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
|
[6]
|
Leeuwen V, Vermeire. Risk assessment of chemicals:An introduction (Second edition)[M]. The Netherlands:Springer, 2007:131-138
|
[7]
|
Frank Wania, Donald Mackay. A global distribution model for persistent organic chemicals[J]. Science of Total Environment, 1995, (160/161): 211-232
|
[8]
|
曹红英, 曹军.天津地区六六六的归宿和跨界面迁移[J].环境化学, 2003, 22(6):548-554
|
[9]
|
Campfens J, Mackay D. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs[J]. Environmental Science and Technology, 1997, 31(2):577-583
|
[10]
|
Rebecca L, Kenneth L, Lisa D. A model of fate of polycyclic aromatic hydrocarbons in the Saguenay Fjord, Canada[J]. Environmental Toxicology and Chemistry, 1998, 17(2):333-341
|
[11]
|
Morten S, Jlling J. Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics[J]. Chemosphere, 1998, 37(1):41-62
|
[12]
|
Rongrong Z, Chesheng Z. Review of environmental multimedia models[J]. Environmental Forensics, 2012, 13(3):216-224
|
[13]
|
Den Hollander H, Ferd S. Spatial variance in multimedia mass balance models:Comparison of LOTOS-EUROS and SimpleBox for PCB-153[J]. Chemosphere, 2007, 68:1318-1326
|
[14]
|
董玉瑛, 雷炳莉.多介质空间分异模型的研究进展[J].哈尔滨工业大学学报, 2006, 11(38):1876-1880
|
[15]
|
Bilitewski B. Global risk-based management of chemical additives Ⅱ: Risk-based assessment and management strategies[J]. Hdb Env Chem, 2013, 23:47-72
|
[16]
|
Den Hollander H, Van Eijkeren J, Meent D. SimpleBox 3.0:Multimedia mass balance model for evaluating the fate of chemical in the environment RIVM Report 601200003/2004[R]. 2004, National Institute for Public Health and the Environment (RIVM). Bilthoven, The Netherlands
|
[17]
|
Brandes LJ, Den Hollander H, Meent D. SimpleBox 2.0:A nested multimedia fate model for evaluating the environment fate for chemicals. RIVM Report 719101029[R]. 1996. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
|
[18]
|
Mara H, Mark A J, Huijbregts, et al. Model and input uncertainty in multi-media fate modeling:Benzo[a]pyrene concentrations in Europe[J]. Chemosphere, 2008, 72:959-967
|
[19]
|
Hollander A, Hauck M, Cousins I T, et al. Assessing the relative importance of spatial variability in emissions versus landscape properties in fate models for environmental exposure assessment of chemicals[J]. Environ Model Assess, 2012, 17:577-587
|
[20]
|
Webster E, Taolian Li, Mackay D. Application of the quantitative water air sediment interaction (QWASI) model to the Great Lakes. CEMC Report No. 200501[R]. Trent University, Peterborough, Ontario
|
[21]
|
Woodne D G, Seth R, Mackay D, et al. Simulating the response of metal contaminated lakes to reductions in atmospheric loading using a modiled QWASI model[J]. Chemosphere, 2000, 41:1377-1388
|
[22]
|
Christopher S, Warren S, Mackay D, et al. A suite of multi-segment fugacity models describing the fate of organic contaminants in aquatic systems:application to the Rihand Reservoir, India[J]. Water Research, 2002, 36:4341-4355
|
[23]
|
Whelan M J. Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model[J]. Chemosphere, 2013, 91:1566-1576
|
[24]
|
Tong Y D, Zhang W, Wang X J, et al. Fate modeling of mercury species andfluxes estimation in an urban river[J]. Environmental Pollution, 2014, 184:54-61
|
[25]
|
Xua F, Qin N, Tao S, et al. Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China[J]. Ecological Modelling, 2013, 252:246-257
|
[26]
|
McKone T E, Enoch K G. CalTOX trademark:A multimedia total exposure model spreadsheet user's guide[R]. Ernest Orlando Lawrence Berkeley national laboratory:The U.S. Environmental Protection Agency National Exposure Research Laboratory, 2002
|
[27]
|
Hertwic E G, Mckone T E. Pollutant-specific scale of multimedia models and its implications for the potential dose[J]. Environment Science and Technology, 2001, 35:142-148
|
[28]
|
贾晓洋, 姜林, 夏天翔, 等.RBCA、CLEA及CalTOX模型在苯并[a]芘污染场地健康风险评估中的应用比较[J].生态毒理学报, 2012, 7(3):277-284
|
[29]
|
Suciu N, Tanaka T, Trevisan M, et al. Environmental fate models[J]. Handbook of Environmental Chemistry, 2013, 23:47-72
|
[30]
|
Webster E, Mackay D, Di Guardo A, et al. Regional differences in Chemical fate model outcome[J]. Chemosphere, 2004, 55:1361-1376
|
[31]
|
Satoshi Managaki, Iku Enomoto, Shigeki Masunaga. Sources and distribution of hexabromocyclododecanes (HBCDs) in Japanese river sediment[J]. Journal of Environmental Monitoring, 2012, 14:901-907
|
[32]
|
Melissa M, Davide G, Antonio D, et a1. Modeling short-term variability of semivolatile organic chemicals in air at a local scale: An integrated modeling approach[J].Environmental Pollution, 2011, 159:1406-1412
|
[33]
|
汤亚飞, 王焰新, 蔡鹤生.地表水环境中农药迁移与归宿[J].武汉化工学院学报, 2005, 27(4):13-15
|
[34]
|
Hughes L, Mackay D, David E. An updated state of the science EQC model for evaluating chemical fate in the environment: Application to D5 (decamethylcyclopentasiloxane)[J].Chemosphere, 2012, 87:118-124
|
[35]
|
In-Sun P, Jae-Woo P. A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for petroleum hydrocarbon-contaminated site management[J].Journal of Hazardous Materials, 2010, 179:1128-1135
|
[36]
|
Lammel G, Klopffer W, Semeena V, et al. Multicompartmental fate of persistent substances:Comparison of predictions from multimedia box models and a multicompartment chemistry-atmospheric transport model[J]. Environmental Science and Pollution Research, 2007, 14 (3):153-165
|
[37]
|
Wegmann F, Moller M, Scheringer M, et al. Influence of vegetation on the environmental partitioning of DDT in two global multimedia models[J]. Environmental Science and Technology, 2004, 38:1505-1512
|
[38]
|
Wegmann F, Cavin L, MacLeod M, et al. The OECD software tool for screening chemicals for persistence and long-range transport potential[J]. Environmental Modelling and Software, 2009, 24:228-237
|
[39]
|
Lammel G, Klopffer W, Semeena VS, et al. Multicompartmental fate of persistent substances. Comparison of prediction from multimedia box models and a multicompartment chemistry-atmospheric transport model[J]. Environmental Science and Pollution Research, 2004, 14 (3):153-165
|
[40]
|
Toose L, Woodfine D, Mackay D, et al. BETR-World: A geographically explicit mode of chemical fate: Application to transport of α-HCH to the Arctic[J]. Environmental Pollution, 2004, 128:223-240
|
[41]
|
MacLeod M, Woodfine D, Mackay D, et al. BETR North America:A regionally segmented multimedia contaminant fate model for North America[J]. Environmental Science and Pollution Research, 2001, 8:156-163
|
[42]
|
Liu S J, Lu Y L, Wang T Y, et al. Using gridded multimedia model to simulate spatial fate of Benzo[a] pyrene on regional scale[J]. Environment International, 2014, 63:53-63
|
[43]
|
Zhang Q, Crittenden J C, Shonnard D, et al. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region[J]. Chemosphere, 2003, 50:1377-1397
|
[44]
|
Shonnard DR, Hiew DS. Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream[J]. Environmental Science and Technology, 2000, 34(24):5222-5228
|
[45]
|
Qiong Z, John C, Crittenden, et al. Development and evaluation of an environmental multimedia fate model CHEMGL for the Great Lakes region[J]. Chemosphere, 2003, 50 (10):1377-1397
|
[46]
|
Seuntjens P, Steurbaut W, Vangronsve J. Chain model for the impact analysis of contaminants in primary food products[R]. Study Report of the Belgian Science Policy, 2006, CP-27
|
[47]
|
Virginia L, Stephen P., BinksMichael J. Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment[J]. Regulatory Toxicology and Pharmacology, 2009, 53:39-45
|
[48]
|
Tanaka T, Ciffroy P, Stenberg K, et al. Regression approaches to derive generic and fish group-specific probability density functions of bio-concentration factors for metals[J]. Environmental Toxicology and Chemistry, 2010, 29(11):2417-2425
|
[49]
|
Ciffroy P, Tanaka T, Johansson E, et al. Linking fate model in freshwater and PBPK model to assess human internal dosimetry of B(a)P associated with drinking water Environ[J]. Environmental Geochemistry and Health, 2011, 33:371-387
|
[50]
|
Olivier J, Manuele M, Raphael C, et al. IMPACT 2002+:A new life cycle impact assessment methodology[J]. The International Journal of Life Cycle Assessment. 2003, 8 (6):324 -330
|