pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响

张瑞昌, 章海波, 涂晨, 骆永明. pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响[J]. 环境化学, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016
引用本文: 张瑞昌, 章海波, 涂晨, 骆永明. pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响[J]. 环境化学, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016
ZHANG Ruichang, ZHANG Haibo, TU Chen, LUO Yongming. Influence of pH, ionic strength, and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles[J]. Environmental Chemistry, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016
Citation: ZHANG Ruichang, ZHANG Haibo, TU Chen, LUO Yongming. Influence of pH, ionic strength, and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles[J]. Environmental Chemistry, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016

pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响

  • 基金项目:

    国家自然科学基金重点项目(41230858)

    国家自然科学基金面上项目(41171248)资助.

Influence of pH, ionic strength, and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles

  • Fund Project:
  • 摘要: 本文初步探讨了不同pH、离子强度及电解质种类对纳米氧化锌(ZnO NPs)稳定性(聚集沉降和溶解)的影响. 沉降实验表明,pH越靠近零电荷点(~pH 9.2),ZnO NPs 聚集体尺寸越大,沉降速度越快,稳定性越低;中性pH条件下,随着离子强度的增加,ZnO NPs ζ电位绝对值减小,聚集体尺寸相应变大,沉降速度加快,稳定性降低.中性pH时ZnO NPs ζ电位为正值,阴离子较阳离子更易使ZnO NPs聚集沉降,且SO42-的影响远大于Cl-. 溶解实验显示,pH 2-11,Zn2+都会释放到溶液中,pH>7.5,ZnO NPs溶解量2+释放到溶液中. 中性条件下,离子强度越高,ZnO NPs越易溶解,且Ca2+对纳米氧化锌溶解的促进作用强于Na+. 这表明离子对纳米氧化锌溶解的促进可能源于阳离子与颗粒表面的离子交换机制.
  • 加载中
  • [1] 张长波,骆永明,吴龙华. 土壤污染物源解析方法及其应用研究进展[J]. 土壤,2007,39(2):190-195
    [2] Wang Z L. Zinc oxide nanostructures: growth, properties, and applications[J]. Journal of Physics: Condensed Matter, 2004, 16: R829-R858
    [3] Ma H B, Williams P L, Diamond S A. Ecotoxicity of manufactured ZnO nanopartilces-A review[J]. Environmental Pollution, 2013, 172: 76-85
    [4] 魏绍东. 纳米氧化锌的现状与发展[J]. 化工中间体,2006,11:6-14
    [5] Gottschalk F, Sonderer T, Scholz RW, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43 (24): 9216-9222
    [6] Badawy A M E, Luxton T P, Silva R G, et al. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions[J]. Environmetal Science & Technology, 2010, 44: 1260-1266
    [7] Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerence (C60) nanoparticles in monovalent and divalent electrolyte solution[J]. Journal of Colloid and Interface Science, 2007, 309: 126-134
    [8] Ballousha M, Manciulea A, Cumberland S, et al. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1875-1882
    [9] Chen K L, Mylon S E, Elimelech M. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes[J]. Environmental Science & Technology, 2006, 40: 1516-1523
    [10] French R A, Jacobson A R, Kim B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43: 1354-1359
    [11] Bian S W, Mudunkotuwa I A, Rupasinghe T, et al. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid[J]. Langmuir, 2011, 27: 6059-6068
    [12] Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19): 3527-3532
    [13] Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4), 1461-1468
    [14] Mudunkotuwa I A, Rupasinghe T, Wu C M, et al. Dissolution of ZnO nanoparticles at circumneutral pH: A study of size effects in the presence and absence of citric acid[J]. Langmuir, 2012, 28 (1): 396-403
    [15] Reed R B, Ladner D A, Higgins C P, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices[J]. Environmental Toxicology and Chemistry, 2012, 31 (1): 93-99
    [16] Meulenkamp E A. Size dependence of the dissolution of ZnO nanoparticles[J]. The Journal of Physical Chemistry B, 1998, 102 (40): 7764-7769
    [17] Molina R, Al-Salama Y, Jurkschat K, et al. Potential environmental influence of amino acids on the behavior of ZnO nanoparticles[J]. Chemosphere, 2011, 83: 545-551
    [18] Zhang Y, Chen Y S, Westerhoff P, et al. Stability of commercial metal oxide nanoparticles in water[J]. Water Research, 2008, 42(8/9): 2204-2212
    [19] Zhang Y, Chen Y S, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43 (17): 4249-4257
    [20] Zhou D X, Keller A A. Role of morphology in the aggregation kinetics of ZnO nanoparticles[J]. Water Research, 2010, 44 (9): 2948-2956
    [21] Chinnapongse S L, MacCuspie R I, Hackley V A. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters[J]. Science of Total Environment, 2001, 409: 2443-2450
    [22] Shin Y H, Liu W S, Su Y F. Aggregation of stabilized TiO2 nanoparticles suspensions in the presence of inorganic ions[J]. Environmental Toxicology and Chemistry, 2012, 31 (8): 1693-1698
    [23] Piccapietra F, Sigg L, Behra R. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater[J]. Environmental Science & Technology, 2012, 46: 818-825
    [24] Fang J, Shan X Q, Wen B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution, 2009, 157: 1101-1109
    [25] Gao B, Cao X D, Yan D, et al. Colloid deposition and release in soils and their association with heavy metals[J]. Critical Reviews in Environmental Science and Technology, 2010, 41(4), 336-372
    [26] Miao A J, Zhang X Y, Luo Z, et al. Zinc oxide-engineered nanoparticles: Dissolution and toxicity to marine phytoplankton[J]. Environmental Toxicology and Chemistry, 2010, 29 (12): 2814-2822
    [27] Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions[J].Journal of Materials Chemistry, 2002, 12 (12), 3773-3778
    [28] 黄昌勇, 徐建明. 土壤学[M]. 第三版. 北京: 中国农业出版社, 2010: 354-363
  • 加载中
计量
  • 文章访问数:  2739
  • HTML全文浏览数:  2630
  • PDF下载数:  1586
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-01-24
  • 刊出日期:  2014-11-15
张瑞昌, 章海波, 涂晨, 骆永明. pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响[J]. 环境化学, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016
引用本文: 张瑞昌, 章海波, 涂晨, 骆永明. pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响[J]. 环境化学, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016
ZHANG Ruichang, ZHANG Haibo, TU Chen, LUO Yongming. Influence of pH, ionic strength, and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles[J]. Environmental Chemistry, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016
Citation: ZHANG Ruichang, ZHANG Haibo, TU Chen, LUO Yongming. Influence of pH, ionic strength, and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles[J]. Environmental Chemistry, 2014, 33(11): 1821-1827. doi: 10.7524/j.issn.0254-6108.2014.11.016

pH、离子强度及电解质种类对纳米氧化锌聚集和溶解的影响

  • 1.  中国科学院土壤环境与污染修复重点实验室(南京土壤研究所), 南京, 210008;
  • 2.  中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所), 烟台, 264003
基金项目:

国家自然科学基金重点项目(41230858)

国家自然科学基金面上项目(41171248)资助.

摘要: 本文初步探讨了不同pH、离子强度及电解质种类对纳米氧化锌(ZnO NPs)稳定性(聚集沉降和溶解)的影响. 沉降实验表明,pH越靠近零电荷点(~pH 9.2),ZnO NPs 聚集体尺寸越大,沉降速度越快,稳定性越低;中性pH条件下,随着离子强度的增加,ZnO NPs ζ电位绝对值减小,聚集体尺寸相应变大,沉降速度加快,稳定性降低.中性pH时ZnO NPs ζ电位为正值,阴离子较阳离子更易使ZnO NPs聚集沉降,且SO42-的影响远大于Cl-. 溶解实验显示,pH 2-11,Zn2+都会释放到溶液中,pH>7.5,ZnO NPs溶解量2+释放到溶液中. 中性条件下,离子强度越高,ZnO NPs越易溶解,且Ca2+对纳米氧化锌溶解的促进作用强于Na+. 这表明离子对纳米氧化锌溶解的促进可能源于阳离子与颗粒表面的离子交换机制.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回