炼金区土壤中汞形态分布及其生物有效性
Distribution and bioavailability of mercury in the soil of gold mine zone
-
摘要: 采用修正的Tessier方法和回归、偏相关等分析技术,研究了某金矿附近土壤中汞的赋存状态及其相互转化关系和生物可利用性.结果显示该区土壤中各形态汞的含量趋势为:有机结合态 >残渣态 >可交换态 >铁锰氧化态 >碳酸盐结合态,其中有机结合态汞所占比重最大在60% 以上,是最重要的赋存形态;土壤中各形态汞不是独立存在的,内部存在一定的转化关系,如碳酸盐结合态汞可以转化成铁锰氧化态、残渣态的汞,而铁锰氧化态的汞与残渣态的汞之间却存在着一定的竞争关系,这种转化关系在外界条件的影响下处于一种动态平衡状态;土壤中的可交换态和有机结合态是较容易被植物吸收利用有效态的汞,其他形态汞被植物吸收较少.Abstract: Modified sequential extraction partial correlation and regression analysis were used to analyze the total content of Hg, its bioavailability and distribution, and the forms in the soil of a gold mine. The results indicate that, the mercury of organic combination state is about more than 60%, which is the most important form in this soil. And the speciation follows the order of organic bounds> residuals> the exchangeable> Fe-Mn oxides> carbonates. The correlation and partial correlation analysis, show that the various forms of mercury in soil do not exist independently, but are in a state of dynamic balance by competition, migration and transformation. What's more, it also shows that the forms of exchangeable and the organic are bioavailable form, which can be taken up by plants more easily than others.
-
Key words:
- soil /
- mercury form /
- bioavailability /
- dynamic balance /
- translocation and transformation
-
[1] UNEP. Report of the global mercury assessment working group on the work of its first meeting [R].Geneva: UNEP,2002 [2] 于建国.我国汞污染防治现状和发展趋势[J].化学工业出版社, 2010,28(2/3): 40 -42
[3] 荆延德,赵石萍,何振立.土壤中汞的吸附-解吸行为研究进展[J].土壤通报, 2010,41(5):1270-1274 [4] 包正铎,王建旭,冯新斌,等. 贵州万山汞矿区污染土壤中汞的形态分布特征[J].生态学杂志,2011, 30(5):907-913 [5] 郑冬梅,王起超,孙丽娜,等. 不同污染类型沉积物中汞的形态分布[J].环境科学与技术,2010,33 (7):44-46 [6] 孔令浩,杨丽原,庞绪贵,等.焦家金矿土壤中汞的形态分布特征研究[J].中国农村水利水电, 2013,2:33-37 [7] 侯明,钱建平,殷辉安. 桂林市土壤汞存在形态的研究[J].土壤通报,2005,36(3):398-401 [8] 鲁洪娟, 倪吾钟, 叶正钱,等.土壤中汞的存在形态及过量汞对生物的不良影响[J].土壤通报, 2007,38 (3):597-600 [9] 侯明,钱建平,张力,等.桂林市菜地土壤-蔬菜汞污染研究和评价[J].生态环境,2004,13(4):575-577 [10] 李永华,杨林生,李海蓉,等.湘黔汞矿区土壤的化学形态及污染特征[J].环境科学,2007,28(3): 654-658 [11] Cui L W, Feng X B, Lin C J, et al. Accumulation and translocation of 198Hg in four crop species[J]. Environmental Toxicology and Chemistry, 2014,33(2):334-340 [12] 冯新斌,陈业材,朱卫国.土壤中汞存在形式的研究[J].矿物学报,1996,16 (2):218-222 [13] 崔妍,丁永生,维民,等.土壤中重金属化学形态与植物吸收的关系[J].大连海事大学学报,2005, 31(2):59-63 [14] 刘晔,李杰颖.污染土壤中汞的形态分布特征[J].环境保护与循环经济, 2013,3:72-75 [15] 魏俊峰,吴大清,彭金莲,等.广州城市水体沉积物中重金属形态分布研究[J].土壤与环境,1999, 8(1):10-14 [16] Alonso E, Santos A, Callejon M, et al. Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin[J]. Chemosphere, 2004,56(6):561-570 [17] 韩张雄,王龙山,郭巨权,等.土壤修复过程中重金属形态的研究综述[J].岩石矿物学杂志, 2012,31(2):271-278 [18] Pagnanellia F, Moscardinla E, Giulianob V, et al. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: Pollution detection and affinity series[J].Environmental Pollution, 2004,132:189-201. [19] 黄先飞,秦樊鑫,胡继伟.重金属污染与化学形态研究进展[J].微量元素与健康研究, 2008,25(1):48-51 [20] 侯明,殷辉安.盆栽蔬菜土壤中汞的形态变化[J].土壤, 2007,39(4): 567-566 [21] 曹秋华,普绍苹,徐卫红,等.根际重金属形态与生物有效性研究进展[J].广州环境科学, 2006,1(3):1-4 [22] [23] 王友保,张莉,沈章军,等.铜尾矿库区土壤与植物中重金属形态分析[J].应用生态学报,2005, 16(12):2418-2422 [24] 孔令浩,杨丽原,庞绪贵,等.焦家金矿土壤中汞的形态分布特征研究[J].中国农村水利水电, 2013,2:33-37 [25] 刘俊华,王文华,彭安.土壤中汞生物有效性的研究[J].农业环境保护,2000,19(4): 216-220
计量
- 文章访问数: 1147
- HTML全文浏览数: 1046
- PDF下载数: 650
- 施引文献: 0