土壤汞污染对油菜的氧化胁迫效应

陈礼洪, 赵康平, 蒋柱武, 刘学平. 土壤汞污染对油菜的氧化胁迫效应[J]. 环境化学, 2015, 34(2): 241-246. doi: 10.7524/j.issn.0254-6108.2015.02.2014070806
引用本文: 陈礼洪, 赵康平, 蒋柱武, 刘学平. 土壤汞污染对油菜的氧化胁迫效应[J]. 环境化学, 2015, 34(2): 241-246. doi: 10.7524/j.issn.0254-6108.2015.02.2014070806
CHEN Lihong, ZHAO Kangping, JIANG Zhuwu, LIU Xueping. Oxidative stress induced by mercury contaminated soil on Brassica juncea[J]. Environmental Chemistry, 2015, 34(2): 241-246. doi: 10.7524/j.issn.0254-6108.2015.02.2014070806
Citation: CHEN Lihong, ZHAO Kangping, JIANG Zhuwu, LIU Xueping. Oxidative stress induced by mercury contaminated soil on Brassica juncea[J]. Environmental Chemistry, 2015, 34(2): 241-246. doi: 10.7524/j.issn.0254-6108.2015.02.2014070806

土壤汞污染对油菜的氧化胁迫效应

  • 基金项目:

    福建工程学院科研启动项目(GYZ11047)资助.

Oxidative stress induced by mercury contaminated soil on Brassica juncea

  • Fund Project:
  • 摘要: 为了明确土壤汞污染的植物毒性效应,利用盆栽模拟试验研究了汞污染土壤对油菜的氧化损伤.结果表明,低浓度的汞污染轻微促进油菜的生长,汞浓度超过1.0 mg·kg-1就显著抑制植物生长,引起叶片面积变小、失绿变黄甚至枯萎等生理现象.随着汞浓度的增加,丙二醛(MDA)含量增加,当汞的浓度增加到8.0 mg·kg-1时,MDA的含量是对照组的4.17倍.随着汞浓度的增加,超氧化物歧化酶(SOD)活性升高,过氧化物酶(POD),过氧化氢酶(CAT)活性先升高后下降,其中SOD和POD在8.0 mg·kg-1汞处理下,活性达到最大,CAT在0.5 mg·kg-1汞处理下活性最大.土壤汞含量为超过1.0 mg·kg-1时,油菜可食部分汞浓度大于食品安全国家标准《食品中污染物限量》(GB 2762-2012)的规定.油菜吸收的汞主要累积在根部,因此在利用此类植物进行土壤修复时,需要清除植物的地下部,才能实现植物修复的目的.
  • 加载中
  • [1] 周玲莉,薛南冬,杨兵,等.黄淮平原农田土壤中重金属的分布和来源[J].环境化学,2013,32 (9): 1706-1713
    [2] 李花,毛宇翔,李永,等.汞在城市污水处理厂的赋存特征及质量平衡-总汞[J].环境化学,2014,33 (7): 1059-1065
    [3] 胡月红.国内外汞污染分布状况研究综述[J].环境保护科学,2008,34(1):38-41
    [4] Meng M, Li B, Shao J J, et al. Accumulation of total mercury and methylmercury in rice plants[J]. Environmental Pollution, 2014, 184: 179-186
    [5] Stolle R, Koeser H, Gutberlet H. Oxidation and reduction of mercury by SCR DeNOx catalysts underue gas conditions in coal fired power plants[J]. Applied Catalysis B: Environmental, 2014, 144: 486-497
    [6] Bravo A G, Cosio C, Amouroux D. Extremely elevatedmethylmercury levels in water,sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkaliplant[J]. Water Research, 2014,49: 391-405
    [7] Hellings J, Adeloju S B, Verheyen T V. Rapid determination of ultra-trace concentrations of mercury in plants and soils bycold vapour inductively coupled plasma-optical emission spectrometry[J]. Microchemical Journal, 2013,111:62-66
    [8] 钱建平,张力,陈华珍,等.桂林市菜地土壤-蔬菜系统汞污染研究[J].地球化学,2009,38(4): 369-378
    [9] 闫双堆,卜玉山,刘利军,等.不同腐殖酸物质对土壤中汞的固定作用及植物吸收的影响[J].环境科学学报,2007,27(1):101-105
    [10] 赖启宏,杜海燕,张忠进,等.珠江三角洲土壤汞高含量区的形成[J].环境化学, 2005,24 (2): 219-220
    [11] 戴前进,冯新斌,仇广乐,等.陕西省潼关采金地区汞污染的初步研究[J].环境化学, 2004,23 (4): 460-464
    [12] 陈建勋,王晓峰.植物生理学实验指导[M]. 广州:华南理工大学出版社,2006:68-69,72-75
    [13] 邹琦.植物生理生化实验指导[M]. 北京:中国农业出版社,1995:76-77
    [14] Zhang Y, Liu J, Zhou Y. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1[J]. Journal of Hazardous Materials, 2013, 260: 1100-1107
    [15] 黄伟,贾志宽,韩清芳.蚜虫危害胁迫对不同苜蓿品种体内丙二醛含量及防御性酶活性的影响[J].生态学报,2007,27(6):2177-2183
    [16] 刘伍香,杜青平,贾晓珊,等. 1,2,4-三氯苯对铜钱草染毒的毒性响应及其机理[J]. 环境化学,2012, 31(7):1023-1028
    [17] Lomonte C, Doronila A, Gregory D, et al. Chelate-assisted phytoextraction of mercury in biosolids[J]. Science of the Total Environment, 2011, 409: 2685-2692
    [18] Gao S, Ou-yang C, Tang L, et al. Growth and antioxidant responses in Jatrophacurcas seedling exposed tomercury toxicity[J]. Journal of Hazardous Materials, 2010, 182: 591-4597
    [19] Wang Y G, Huang J Y, Hopke P K, et al.Effect of the shutdown of a large coal-fired power plant on ambientmercury species[J].Chemosphere, 2013, 92: 360-367
    [20] Wang J X, Feng X B, Anderson C W N, et al. Remediation of mercury contaminated sites-A review[J]. Journal of Hazardous Materialsl, 2012, 221-222: 1-18
    [21] 叶亚新,金琎,陈佳佳,等.镉胁迫下萝卜幼苗根、茎、叶保护酶活性的比较[J]. 江苏农业科学,2008, 3: 131-135
    [22] 茹淑华,张国印,孙世友,等.污灌区土壤-植物系统中重金属的分布与迁移转化特征研究[J]. 河北农业科学,2010,14(7): 77-79
  • 加载中
计量
  • 文章访问数:  1087
  • HTML全文浏览数:  993
  • PDF下载数:  1086
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-07-08
  • 刊出日期:  2015-02-15

土壤汞污染对油菜的氧化胁迫效应

  • 1.  福建工程学院生态环境与城市建设学院, 福州, 350118;
  • 2.  环境保护部环境规划院, 北京, 100012
基金项目:

福建工程学院科研启动项目(GYZ11047)资助.

摘要: 为了明确土壤汞污染的植物毒性效应,利用盆栽模拟试验研究了汞污染土壤对油菜的氧化损伤.结果表明,低浓度的汞污染轻微促进油菜的生长,汞浓度超过1.0 mg·kg-1就显著抑制植物生长,引起叶片面积变小、失绿变黄甚至枯萎等生理现象.随着汞浓度的增加,丙二醛(MDA)含量增加,当汞的浓度增加到8.0 mg·kg-1时,MDA的含量是对照组的4.17倍.随着汞浓度的增加,超氧化物歧化酶(SOD)活性升高,过氧化物酶(POD),过氧化氢酶(CAT)活性先升高后下降,其中SOD和POD在8.0 mg·kg-1汞处理下,活性达到最大,CAT在0.5 mg·kg-1汞处理下活性最大.土壤汞含量为超过1.0 mg·kg-1时,油菜可食部分汞浓度大于食品安全国家标准《食品中污染物限量》(GB 2762-2012)的规定.油菜吸收的汞主要累积在根部,因此在利用此类植物进行土壤修复时,需要清除植物的地下部,才能实现植物修复的目的.

English Abstract

参考文献 (22)

目录

/

返回文章
返回