水中多壁碳纳米管的凝聚动力学

方华, 孙宇心, 荆洁, 方若雨, 王媛. 水中多壁碳纳米管的凝聚动力学[J]. 环境化学, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601
引用本文: 方华, 孙宇心, 荆洁, 方若雨, 王媛. 水中多壁碳纳米管的凝聚动力学[J]. 环境化学, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601
FANG Hua, SUN Yuxin, JING Jie, FANG Ruoyu, WANG Yuan. Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems[J]. Environmental Chemistry, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601
Citation: FANG Hua, SUN Yuxin, JING Jie, FANG Ruoyu, WANG Yuan. Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems[J]. Environmental Chemistry, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601

水中多壁碳纳米管的凝聚动力学

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2008ZX07101-02-03)

    江苏省自然科学基金项目(BK20100592)

    江苏高校优势学科建设工程资助项目.

Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems

  • Fund Project:
  • 摘要: 利用动态光散射技术研究了环境因素对水中多壁碳纳米管(Multi-walled carbon nanotubes,MWNTs)颗粒凝聚过程的影响.结果表明,投加一价、二价电解质均可使水中MWNTs颗粒Zeta电位减小、水合动力学半径增大,促进颗粒间凝聚的发生;水中MWNTs颗粒的凝聚过程可分为反应控制和扩散控制两个不同阶段,符合经典的胶体稳定性(DLVO)理论.经计算,Na+、K+、Ca2+和Mg2+的临界凝聚浓度分别为221、251、8.0、8.4 mmol·L-1.腐殖酸存在可通过空间位阻效应显著增强水中MWNTs的分散性,表明MWNTs可稳定存在于典型的水环境中.
  • 加载中
  • [1] Li S P, Wu W, Campidelli S, et al. Adsorption of carbon nanotubes on active carbon microparticles[J]. Carbon, 2008, 46(7):1091-1095
    [2] Zhu L, Chang D W, Dai L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells[J]. Nano Letters, 2007, 7(12):3592-3597
    [3] Alloy M M, Roberts A P. Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction[J]. Ecotoxicology Environmental Safety, 2011, 74(7):1839-1843
    [4] Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environmental Science & Technology, 2007, 41(1):179-184
    [5] Roberts A P, Mount A S, Seda B, et al. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna[J]. Environmental Science & Technology, 2007, 41(8):3025-3029
    [6] Saleh N B, Pfefferle L D, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications[J]. Environmental Science & Technology, 2008, 42(21):7963-7969
    [7] Lin M Y, Lindsay H M, Weitz D A, et al. Universality of fractal aggregates as probed by light scattering[J]. Proceedings of the Royal Society of London Series A, 1989, 423(1864):71-87
    [8] Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir, 2006, 22(26):10994-11001
    [9] Clougherty D P, Zhu X. Stability and Teller's theorem:Fullerenes in the march model[J]. Physical Review A, 1997, 56(1):632-635
    [10] Vaisman L, Wagner H D, Marom G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science, 2006, (128/130):37-46
    [11] Sano M, Okamura J, Shinkai S. Colloidal nature of single-walled carbon nanotubes in electrolyte solution: The Schulze-Hardy rule[J]. Langmuir, 2001, 17(22):7172-7173
    [12] Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Progress in Surface Science, 1993, 43(1/4):30-59
    [13] 张宝贵. 环境化学[M]. 武汉:华中科技大学出版社, 2009
    [14] Yang K, Xing B S. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157(4):1095-1100
  • 加载中
计量
  • 文章访问数:  784
  • HTML全文浏览数:  706
  • PDF下载数:  610
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-16
  • 刊出日期:  2015-02-15
方华, 孙宇心, 荆洁, 方若雨, 王媛. 水中多壁碳纳米管的凝聚动力学[J]. 环境化学, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601
引用本文: 方华, 孙宇心, 荆洁, 方若雨, 王媛. 水中多壁碳纳米管的凝聚动力学[J]. 环境化学, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601
FANG Hua, SUN Yuxin, JING Jie, FANG Ruoyu, WANG Yuan. Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems[J]. Environmental Chemistry, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601
Citation: FANG Hua, SUN Yuxin, JING Jie, FANG Ruoyu, WANG Yuan. Aggregation kinetics of multi-walled carbon nanotubes in aquatic systems[J]. Environmental Chemistry, 2015, 34(2): 347-351. doi: 10.7524/j.issn.0254-6108.2015.02.2014061601

水中多壁碳纳米管的凝聚动力学

  • 1.  南京信息工程大学环境科学与工程学院, 南京, 210044;
  • 2.  大气环境与装备技术协同创新中心, 南京, 210044;
  • 3.  江苏省环境科学研究院, 南京, 210036
基金项目:

国家水体污染控制与治理科技重大专项(2008ZX07101-02-03)

江苏省自然科学基金项目(BK20100592)

江苏高校优势学科建设工程资助项目.

摘要: 利用动态光散射技术研究了环境因素对水中多壁碳纳米管(Multi-walled carbon nanotubes,MWNTs)颗粒凝聚过程的影响.结果表明,投加一价、二价电解质均可使水中MWNTs颗粒Zeta电位减小、水合动力学半径增大,促进颗粒间凝聚的发生;水中MWNTs颗粒的凝聚过程可分为反应控制和扩散控制两个不同阶段,符合经典的胶体稳定性(DLVO)理论.经计算,Na+、K+、Ca2+和Mg2+的临界凝聚浓度分别为221、251、8.0、8.4 mmol·L-1.腐殖酸存在可通过空间位阻效应显著增强水中MWNTs的分散性,表明MWNTs可稳定存在于典型的水环境中.

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回