不同有机体系的混凝特征研究:以硫酸铝为例

洪云, 张伟军, 左竟成, 刘园园, 董伟, 王东升. 不同有机体系的混凝特征研究:以硫酸铝为例[J]. 环境化学, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005
引用本文: 洪云, 张伟军, 左竟成, 刘园园, 董伟, 王东升. 不同有机体系的混凝特征研究:以硫酸铝为例[J]. 环境化学, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005
HONG Yun, ZHANG Weijun, ZUO Jingcheng, LIU Yuanyuan, DONG Wei, WANG Dongsheng. Coagulation characteristics of different organic systems using aluminum sulfate as a coagulant[J]. Environmental Chemistry, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005
Citation: HONG Yun, ZHANG Weijun, ZUO Jingcheng, LIU Yuanyuan, DONG Wei, WANG Dongsheng. Coagulation characteristics of different organic systems using aluminum sulfate as a coagulant[J]. Environmental Chemistry, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005

不同有机体系的混凝特征研究:以硫酸铝为例

  • 基金项目:

    国家杰出青年科学基金项目(51025830)资助.

Coagulation characteristics of different organic systems using aluminum sulfate as a coagulant

  • Fund Project:
  • 摘要: 选择牛血清蛋白和腐殖酸作为实验对象,考察了硫酸铝投加量和pH对两种有机体系有机物去除率、电荷性质以及絮体性质(粒径分布、分形维数和沉降性)的影响.实验结果发现,硫酸铝混凝对腐殖酸的去除效率要高于BSA,当硫酸铝投加量为5 mmol·L-1时,两种体系中DOC的去除率均达到最高.电中和在腐殖酸的混凝去除过程中占主导地位,而吸附架桥是BSA去除的主要机理.对于两种有机体系,随着硫酸铝投加量的升高,絮体粒径逐渐减小,而分形维数增大.相比腐殖酸体系,BSA混凝形成絮体粒径大但分形维数更小,同时絮体沉降性较差.此外,两种体系中DOC去除率在pH值等于6时均达到最高.同时,当pH值从5上升到9的过程中,BSA体系粒径逐渐增加;而在腐殖酸体系中,在pH值小于6时,絮体成长平衡时间延长,同时平衡后絮体粒径要明显大于pH值大于7条件下形成的絮体.
  • 加载中
  • [1] Matilainen A, Vepsäläinen M, Sillanpää M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197
    [2] Jarvis P, Jefferson B, Parsons S A. How the natural organic matter to coagulant ratio impacts on floc structural properties[J].Environmental Science and Technology, 2005, 39(22): 8919-8924
    [3] Edzwald J K, Benschoten Van J E. Aluminum coagulation of natural organic matter// Chemical Water and Wastewater Treatment[M]. Springer, 1990: 341-359
    [4] Wilkinson K, Negre J C, Buffle J. Coagulation of colloidal material in surface waters: The role of natural organic matter[J].Journal of Contaminant Hydrology, 1997, 26(1/4): 229-243
    [5] Korshin G V, Benjamin M M, Sletten R S. Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of organo-halide compounds during chlorination[J].Water Research, 1997, 31(7): 1643-1650
    [6] 梁亮, 俞文正, 徐磊. 柠檬酸对不同混凝剂混凝效果的影响[J].环境科学学报, 2013, 33(9): 2428-2431
    [7] Henderson RK, Parsons S A, Jefferson B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae[J].Water research, 2010, 44(12): 3617-3624
    [8] 施国键, 乔俊莲, 王国强,等. 胞外分泌物和天然有机物对混凝的影响[J].环境科学, 2010, 31(3): 673-677
    [9] Glover S M, Yan Y D, Jameson G J, et al. Bridging flocculation studied by light scattering and settling[J].Chemical Engineering Journal, 2000, 80(1/3): 3-12
    [10] 朱哲, 李涛, 王东升,等. 阳离子型聚丙烯酰胺投加量对絮体性状特征的影响[J].环境化学, 2007, 26(2): 175-179
    [11] Wang D, Gregory J, Tang H. Mechanistic difference of coagulation of kaolin between PACl and cationic polyelectrolytes: A comparative study on zone 2 coagulation[J].Drying Technology, 2008, 26(8): 1060-1067
    [12] Li T, Zhu Z, Wang D, Yao C, et al. Characterization of floc size, strength and structure under various coagulation mechanisms[J].Powder Technology, 2006, 168(2): 104-110
    [13] Walker H W, Bob M M. Stability of particle flocs upon addition of natural organic matter under quiescent conditions[J].Water Research, 2001, 35(4): 875-882
    [14] Hu C, Liu H, Qu J, et al. Coagulation behavior of aluminum salts in eutrophic water: Significance of Al13 species and pH control[J].Environmental Science and Technology, 2006, 40(1): 325-331
    [15] Yan M, Wang D, Qu J, et al. Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization[J].Water research, 2008, 42(8/9): 2278-2286
    [16] Zhao H, Liu H, Qu J. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species[J].Journal of Colloid and Interface Science, 2009, 330(1):105-112
    [17] Kuan W H, Wang M K, Huang P M, et al. Effect of citric acid on aluminum hydrolytic speciation[J].Water Research, 2005, 39(15): 3457-3466
    [18] Liu Y, Zhang W, Yang X, et al. Advanced treatment of effluent from municipal WWTP with different metal salt coagulants: Contaminants treatability and floc properties[J].Separation and Purification Technology, 2013, 120: 123-128
  • 加载中
计量
  • 文章访问数:  1351
  • HTML全文浏览数:  1260
  • PDF下载数:  801
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-10
  • 刊出日期:  2015-02-15
洪云, 张伟军, 左竟成, 刘园园, 董伟, 王东升. 不同有机体系的混凝特征研究:以硫酸铝为例[J]. 环境化学, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005
引用本文: 洪云, 张伟军, 左竟成, 刘园园, 董伟, 王东升. 不同有机体系的混凝特征研究:以硫酸铝为例[J]. 环境化学, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005
HONG Yun, ZHANG Weijun, ZUO Jingcheng, LIU Yuanyuan, DONG Wei, WANG Dongsheng. Coagulation characteristics of different organic systems using aluminum sulfate as a coagulant[J]. Environmental Chemistry, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005
Citation: HONG Yun, ZHANG Weijun, ZUO Jingcheng, LIU Yuanyuan, DONG Wei, WANG Dongsheng. Coagulation characteristics of different organic systems using aluminum sulfate as a coagulant[J]. Environmental Chemistry, 2015, 34(2): 352-357. doi: 10.7524/j.issn.0254-6108.2015.02.2014061005

不同有机体系的混凝特征研究:以硫酸铝为例

  • 1.  富士康科技集团, 廊坊, 065000;
  • 2.  中国科学院生态环境研究中心环境水质学国家重点实验室, 北京, 100085;
  • 3.  重庆市永川区环境监测站, 重庆, 404100;
  • 4.  北京环球中科水务科技有限公司, 北京, 100085
基金项目:

国家杰出青年科学基金项目(51025830)资助.

摘要: 选择牛血清蛋白和腐殖酸作为实验对象,考察了硫酸铝投加量和pH对两种有机体系有机物去除率、电荷性质以及絮体性质(粒径分布、分形维数和沉降性)的影响.实验结果发现,硫酸铝混凝对腐殖酸的去除效率要高于BSA,当硫酸铝投加量为5 mmol·L-1时,两种体系中DOC的去除率均达到最高.电中和在腐殖酸的混凝去除过程中占主导地位,而吸附架桥是BSA去除的主要机理.对于两种有机体系,随着硫酸铝投加量的升高,絮体粒径逐渐减小,而分形维数增大.相比腐殖酸体系,BSA混凝形成絮体粒径大但分形维数更小,同时絮体沉降性较差.此外,两种体系中DOC去除率在pH值等于6时均达到最高.同时,当pH值从5上升到9的过程中,BSA体系粒径逐渐增加;而在腐殖酸体系中,在pH值小于6时,絮体成长平衡时间延长,同时平衡后絮体粒径要明显大于pH值大于7条件下形成的絮体.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回