基于表面增强拉曼研究好氧菌株对砷的原位还原过程

刘颖, 张建锋, 杜晶晶. 基于表面增强拉曼研究好氧菌株对砷的原位还原过程[J]. 环境化学, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808
引用本文: 刘颖, 张建锋, 杜晶晶. 基于表面增强拉曼研究好氧菌株对砷的原位还原过程[J]. 环境化学, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808
LIU Ying, ZHANG Jianfeng, DU Jingjing. In-situ Surface enhanced Raman scattering characterization of arsenate reduction mediated by Pantoea sp.IMH[J]. Environmental Chemistry, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808
Citation: LIU Ying, ZHANG Jianfeng, DU Jingjing. In-situ Surface enhanced Raman scattering characterization of arsenate reduction mediated by Pantoea sp.IMH[J]. Environmental Chemistry, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808

基于表面增强拉曼研究好氧菌株对砷的原位还原过程

  • 基金项目:

    国家重大科学仪器设备开发专项(2011YQ0301241002)资助.

In-situ Surface enhanced Raman scattering characterization of arsenate reduction mediated by Pantoea sp.IMH

  • Fund Project:
  • 摘要: 从内蒙古高砷地区土壤中分离得到好氧菌株Pantoea sp. IMH,通过场发射扫描电镜与透射电镜表征该菌株形貌为短棒状、周生鞭毛.最小生长抑制浓度测定结果表明菌株IMH对As(Ⅴ)和As(Ⅲ)均有一定抗性.砷还原动力学过程研究表明菌株IMH具有高效砷还原能力.利用表面增强拉曼散射(Surface enhanced Raman scattering, SERS)作为表征手段,采用自主计的流动检测装置,检测到了菌株IMH的30 min内的砷还原过程.通过对菌株砷还原机理的探究认为,arsH、arsC、arsB和arsR等4种基因片段在调控砷还原过程中起到了主要作用.
  • 加载中
  • [1] Hughes M F. Arsenic toxicity and potential mechanisms of action[J]. Toxicol Lett, 2002, 133(1):1-16
    [2] Chen L M, Liu Y N. Surface-Enhanced raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: Effect of metal ions[J]. Acs Applied Materials & Interfaces, 2011, 3(8):3091-3096
    [3] Guerrini L, Rodriguez-Loureiro I, Correa-Duarte MA, et al.Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water[J]. Nanoscale, 2014, 6(14): 8368-8375
    [4] Liu M, Wang Z, Zong S, et al.SERS detection and removal of mercury(Ⅱ)/silver(Ⅰ) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles[J]. Acs Applied Materials & Interfaces, 2014, 6(10): 7371-7379
    [5] 刘文婧 杜晶晶 景传勇. 表面增强拉曼光谱技术应用于环境污染物检测的研究进展[J]. 环境化学,2014,33(2):217-228
    [6] Xu Z, Hao J, Li F, et al.Surface-enhanced Raman spectroscopy of arsenate and arsenite using Ag nanofilm prepared by modified mirror reaction[J]. Journal of Colloid and Interface Science, 2010, 347(1): 90-95
    [7] Gao T, Wang Y Q, Wang K, et al. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS[J]. Acs Applied Materials & Interfaces Substrate, 2013, 5(15): 7308-7314
    [8] Li S K, Yan Y X, Wang J L, et al. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate[J]. Nanoscale, 2013, 5(24): 12616-12623
    [9] Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of Colloid and Interface Science, 2001, 234(1): 204-216
    [10] Mulvihill M, Tao A, Benjauthrit K, et al.Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water[J]. Angewandte Chemie-International Edition, 2008, 47(34): 6456-6460
    [11] Du J, Cui J, Jing C. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor[J]. Chemical Communications, 2014, 50(3): 347-349
    [12] Bachate S P, Cavalca L, Andreoni V. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains[J]. Journal of Applied Microbiology, 2009, 107(1): 145-156
    [13] Liao V H C, Chu Y J, Su Y C, et al. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan[J]. Journal of Contaminant Hydrology, 2011, 123(1-2): 20-29
    [14] Matlakowska R, Drewniak L, Sklodowska A. Arsenic-hyper tolerant pseudomonads isolated from ancient gold and Copper-Bearing black shale Deposits[J]. Geomicrobiology Journal, 2008, 25(7-8): 357-362
    [15] Ruta M, Pepi M, Gaggi C, et al. As(Ⅴ)-reduction to As(Ⅲ) by arsenic-resistant Bacillusspp bacterial strains isolated from low-contaminated sediments of the Oliveri-Tindari Lagoon, Italy[J]. Chemistry and Ecology, 2011, 27(3): 207-219
    [16] Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Applied and Environmental Microbiology, 2005, 71(2): 599-608
    [17] Tian H, Jing C. Genome sequence of the aerobic arsenate-reducing bacterium Pantoea sp. Strain IMH[J]. Genome Announcements, 2014, 2(2)
    [18] Rosen B P. Biochemistry of arsenic detoxification[J]. FEBS Lett, 2002, 529(1): 86-92
    [19] Wu X L, Miao B, Han J A, et al.Purification and enzymatic properties of arsenic resistance protein ArsH from heterogeneous expression in E. coli BL21[J]. T Nonferr Metal Soc, 2010, 20(10):1987-1992
    [20] Mo H Y, Chen Q, Du J, et al.Ferric reductase activity of the Ars H Protein from acidithiobacillus ferrooxidans[J]. J Microbiol Biotechn 2011, 21(5): 464-469
    [21] Hervas M, Lopez-Maury L, Leon P, et al.ArsH from the Cyanobacterium Synechocystis sp PCC 6803 is an efficient NADPH-Dependent quinone reductase[J]. Biochemistry-Us, 2012, 51(6): 1178-1187
    [22] Neyt C, Iriarte M, Thi V H, et al. Virulence and arsenic resistance in yersiniae[J]. J Bacteriol, 1997, 179(3): 612-619
  • 加载中
计量
  • 文章访问数:  1235
  • HTML全文浏览数:  1142
  • PDF下载数:  670
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-11-18
  • 刊出日期:  2015-07-15
刘颖, 张建锋, 杜晶晶. 基于表面增强拉曼研究好氧菌株对砷的原位还原过程[J]. 环境化学, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808
引用本文: 刘颖, 张建锋, 杜晶晶. 基于表面增强拉曼研究好氧菌株对砷的原位还原过程[J]. 环境化学, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808
LIU Ying, ZHANG Jianfeng, DU Jingjing. In-situ Surface enhanced Raman scattering characterization of arsenate reduction mediated by Pantoea sp.IMH[J]. Environmental Chemistry, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808
Citation: LIU Ying, ZHANG Jianfeng, DU Jingjing. In-situ Surface enhanced Raman scattering characterization of arsenate reduction mediated by Pantoea sp.IMH[J]. Environmental Chemistry, 2015, 34(7): 1275-1280. doi: 10.7524/j.issn.0254-6108.2015.07.2014111808

基于表面增强拉曼研究好氧菌株对砷的原位还原过程

  • 1.  西安建筑科技大学, 西安, 710055;
  • 2.  中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家重大科学仪器设备开发专项(2011YQ0301241002)资助.

摘要: 从内蒙古高砷地区土壤中分离得到好氧菌株Pantoea sp. IMH,通过场发射扫描电镜与透射电镜表征该菌株形貌为短棒状、周生鞭毛.最小生长抑制浓度测定结果表明菌株IMH对As(Ⅴ)和As(Ⅲ)均有一定抗性.砷还原动力学过程研究表明菌株IMH具有高效砷还原能力.利用表面增强拉曼散射(Surface enhanced Raman scattering, SERS)作为表征手段,采用自主计的流动检测装置,检测到了菌株IMH的30 min内的砷还原过程.通过对菌株砷还原机理的探究认为,arsH、arsC、arsB和arsR等4种基因片段在调控砷还原过程中起到了主要作用.

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回