钒在石煤提钒区水稻土中的吸附-解吸特征
Adsorption-desorption characteristics of vanadium on paddy soils from the V-containing stone coal smelting area
-
摘要: 采用静态平衡实验,研究了不同pH值、温度和初始钒浓度条件下,钒在石煤提钒区水稻土中的吸附-解吸特性.结果表明,不同钒含量水稻土对钒的吸附等温线均符合Langmuir方程和Freundlich方程,Elovich方程和双常数方程可较好地描述水稻土对钒的吸附动力学过程.水稻土钒的吸附-解吸量随温度和溶液初始钒浓度增加而增加,随pH升高而减少.低钒含量土壤(140 mg·kg-1)对钒的最大吸附量为2813 mg·kg-1,高于高钒含量土壤(650 mg·kg-1)的最大吸附量(2038 mg·kg-1).土壤钒的解吸量随吸附量的增加而增大,解吸率为10.7%—29.3%,两者呈幂函数关系.酸性条件和较高温度下水稻土吸附的钒较易解吸,进入环境的风险较高,因此,我国石煤提钒区外源钒进入水稻土壤后其潜在迁移风险值得关注.Abstract: Adsorption-desorption characteristics of vanadium(V) on paddy soils collected from the vicinity of V-containing stone coal smelting area, were studied by batch experiments under conditions of different pH values, temperatures and initial V concentrations in solution. The results showed that the adsorption isotherms of V on two paddy soils were well described by both Langmuir and Freundlich equation, and the adsorption kinetic fitted well with Elovich equation and double constant equation. The adsorption and desorption amount of V on paddy soils increased with the increase of temperature, initial V concentration, and the decrease of pH value, respectively. The maximum adsorption amount of V on soil was 2813 mg·kg-1, with low V content (140 mg·kg-1), and 2038 mg·kg-1 on soil with high V content (650 mg·kg-1). The V desorption amount on paddy soils increased with increasing V desorption amount, and the adsorption rate was in the range of 10.7%—29.3%. The relationship between adsorption and desorption amount of V could be described by power function equation.Since V adsorbed by paddy soil can be easily released in acid condition and high temperature, attention should be paid to the potential mobilization risk of exogenous V entering into paddy soils from the V-containing stone coal smelting area in south China.
-
Key words:
- vanadium-containing stone coal smelting area /
- paddy soil /
- vanadium /
- adsorption /
- desorption
-
-
[1] 蒋凯琦, 郭朝晖, 肖细元. 中国钒矿资源的区域分布与石煤中钒的提取工艺[J]. 湿法冶金, 2010, 29(4):216-219 [2] 宁顺明, 马荣骏. 我国石煤提钒的技术开发及努力方向[J]. 矿冶工程, 2012, 32(5):57-61 [3] Panichev N, Mandiwana K, Moema D, et al. Distribution of vanadium(Ⅴ) species between soil and plants in the vicinity of vanadium mine[J]. Journal of Hazardous Materials, 2006, 137(2):649-653 [4] [5] Yang J Y, Tang Y, Yang K, et al. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site[J]. Journal of Hazardous Materials, 2014, 264(2):498-504 [6] Hindy K T, Abdel Shafy H I, Faraga S A. The role of the cement industry in the contamination of air, water, soil and plant with vanadium in Cairo[J]. Environment Pollution, 1990, 66(3):195-205 [7] Teng Y G, Yang J, Sun Z J, et al. Environmental vanadium distribution, mobility and bioaccumulation in different land-use districts in Panzhihua region, SW China[J]. Environmental Monitoring and Assessment, 2011, 176(1-4):605-620 [8] 杨淼. 典型石煤提钒区和蔬菜基地土壤钒污染特征及基准值研究[D]. 长沙:中南大学硕士学位论文, 2012 [9] 王芳, 李恋卿, 董长勋, 等. 黄泥土和乌栅中不同粒径微团聚体对Cu2+的吸附与解吸[J]. 环境化学, 2007, 26(2):135-140 [10] 王胜利, 武文飞, 南忠仁, 等. 绿洲区土壤镍的吸附解吸特性[J]. 干旱区研究, 2010, 27(6):825-831 [11] Agbenin J O, Atin A M. Copper sorption characteristics and activity in Asavanna acid soil from Nigeria[J]. Water, Air, and Soil Pollution, 2003, 150(1-4):43-58 [12] 杨杰文, 陈爱珠, 钟来元. 砖红壤对Cr(Ⅵ)吸附-解吸反应动力学研究[J]. 环境化学, 2010, 29(2):200-204 [13] 王凯荣, Selim H M, 朱端卫. 钒和磷在土壤中的竞争吸附与迁移特性研究[J]. 农业环境科学学报, 2003, 22(5):536-540 [14] Gäbler H E, Glüh K, Bahr A, et al. Quantification of vanadium adsorption by German soils[J]. Journal of Geochemical Exploration, 2009, 103(1):37-44 [15] 滕彦国, 矫旭东, 王金生. 攀枝花矿区土壤对钒的吸附特征研究[J]. 土壤学报, 2009, 46(2):356-360 [16] 樊灏, 杨金燕, 边静虹, 等. V(Ⅴ)与V(Ⅳ)在不同土壤中的吸附-解吸行为研究[J]. 环境科学与技术, 2014, 37(8):1-7 [17] Canadian Council of Ministers of the Environment. Canadian soil quality guidelines for the protection of environmental and human health:vanadium[C]. 1997 [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999:13-14, 60-69 , 107-108
[19] 缪鑫, 李兆君, 龙健, 等. 不同类型土壤对汞和砷的吸附解吸特征研究[J]. 核农学报, 2012, 26(3):552-557 [20] 陈苏, 孙丽娜, 孙铁珩, 等. 不同污染负荷土壤中镉和铅的吸附-解吸行为[J]. 应用生态学报, 2007, 18(8):1819-1826 [21] 陈苏, 孙铁珩, 孙丽娜, 等. Cd2+、Pb2+在根际和非根际土壤中的吸附-解吸行为[J]. 环境科学, 2007, 28(4):843-851 [22] 王斐, 王敏, 唐景春, 等. Hg在玲珑金矿区典型农田土壤中的吸附特征研究[J]. 环境科学, 2011, 32(9):2669-2675 [23] Mikkonen A, Tummavuori J. Retention of vanadium(Ⅴ) by three Finnish mineral soils[J]. European Journal of Soil Science, 1994, 45(3), 361-368 [24] 邹宝方, 何增耀. 钒的环境化学[J]. 环境污染与防治, 1993, 15(1):26-31 [25] 王忠全, 游植麟, 廖宗文. 土壤砷的吸持研究[J]. 农业环境保护, 1996, 15(6):274-276 [26] 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5):706-711 [27] 张树芹, 路福绥, 李丽芳, 等. 蒙脱土和高岭土对Pb2+的吸附[J]. 应用化学, 2011, 28(12):1441-1447 [28] 滕彦国, 张庆强, 肖杰, 等. 攀枝花公园土壤中钒的地球化学形态及潜在生态风险[J]. 矿物岩石, 2008, 28(2):102-106 [29] 刘学, 梁成华, 杜立宇, 等. 不同污染负荷棕壤中砷的吸附-解吸行为[J]. 应用基础与工程科学学报, 2011, 19(2):222-230 [30] Kabata-Pendias A. Trace elements in soils and plants (4th Edition) [M]. Boca Raton:CRC Press, 2011:173-179 -
![WeChat](http://eekw.rcees.ac.cn//eekw-data/hjhx/2015/9/PIC/wechat_cnhjhx_5488.jpg)
计量
- 文章访问数: 1300
- HTML全文浏览数: 1243
- PDF下载数: 488
- 施引文献: 0