芬顿试剂改性制备油茶壳吸附材料

刘超, 廖雷, 贾力强, 彭娟, 覃爱苗, 杨威, 罗恢泓. 芬顿试剂改性制备油茶壳吸附材料[J]. 环境化学, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202
引用本文: 刘超, 廖雷, 贾力强, 彭娟, 覃爱苗, 杨威, 罗恢泓. 芬顿试剂改性制备油茶壳吸附材料[J]. 环境化学, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202
LIU Chao, LIAO Lei, JIA Liqiang, PENG Juan, QIN Aimiao, YANG Wei, LUO Huihong. Producing modified absorption materials by Fenton[J]. Environmental Chemistry, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202
Citation: LIU Chao, LIAO Lei, JIA Liqiang, PENG Juan, QIN Aimiao, YANG Wei, LUO Huihong. Producing modified absorption materials by Fenton[J]. Environmental Chemistry, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202

芬顿试剂改性制备油茶壳吸附材料

  • 基金项目:

    国家自然科学基金(51468011)

    广西高校专利倍增计划(2013ZL06,2013ZL062)资助.

Producing modified absorption materials by Fenton

  • Fund Project:
  • 摘要: 利用廉价的农业废弃物油茶壳,以磷酸作为活化剂,料液比1:5(W:W),活化温度500℃,活化时间2 h条件下制备了油茶果壳炭,再经芬顿试剂10:1(N:N)进行改性,制备了新型的吸附材料.通过扫描电镜SEM观察吸附剂表面形貌,傅里叶红外光谱FT-IR分析其表面官能团,X-射线粉末衍射分析其晶型结构,N2吸附-脱附分析其比表面积大小及孔径分布.结果表明,羟基自由基改性材料孔隙结构表层部分被覆盖,不含铁矿物晶体,表面产生了大量的羟基、羰基、羧基基团,能够有效地改善油茶果壳炭的吸附效果; 油茶果壳炭改性前后比表面积分别为1244 m2·g-1、167 m2·g-1,平均孔径分别为3.284 nm和4.021 nm,说明材料孔道没有被堵塞.
  • 加载中
  • [1] Shen W, Li Z, Liu Y. Surface chemical functional groups modification of porous carbon[J]. Recent Patents on Chemical Engineering, 2008, 1(1):27-40
    [2] Wang G P, Wu T, Li Y J, et al. Removal of ampicillin sodium in solution using activated carbon adsorption integrated with H2O2 oxidation[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(5):623-628
    [3] Sun C J, Wang Y, Cui H X, et al. Effect of surface modification on mesoporous activated carbon's adsorption capacity to two agro-antibiotics[J]. Chinese Journal of Pesticide Science, 2012, 14(1):89-94
    [4] Jung M J, Jeong E, Lee S I, et al. Improved capacitance characteristics of activated carbon-based electrodes by physicochemical base-tuning[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(2):642-647
    [5] Liu S X, Chen X, Chen X Y, et al. Activated carbon with excellent chromium(Ⅵ) adsorption performance prepared by acid-base surface modification[J]. Journal of Hazardous Materials, 2007, 141(1):315-319
    [6] Shim J W, Park S J, Ryu S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon, 2001, 39(11):1635-1642
    [7] Suzuki R M, Andrade A D, Sousa J C, et al. Preparation and characterization of activated carbon from rice bran[J]. Bioresource technology, 2007, 98(10):1985-1991
    [8] Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production-A review[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9):1966-2005
    [9] Yun C H, Park Y H, Park C R. Effects of pre-carbonization on porosity development of activated carbons from rice straw[J]. Carbon, 2001, 39(4):559-567
    [10] Pandolfo A G, Amini-Amoli M, Killingley J S. Activated carbons prepared from shells of different coconut varieties[J]. Carbon, 1994, 32(5):1015-1019
    [11] Laine J, Calafat A. Factors affecting the preparation of activated carbons from coconut shell catalized by potassium[J]. Carbon, 1991, 29(7):949-953
    [12] Diao Y, Walawender W P, Fan L T. Activated carbons prepared from phosphoric acid activation of grain sorghum[J]. Bioresource Technology, 2002, 81(1):45-52
    [13] Teng H, Yeh T S, Hsu L Y. Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon, 1998, 36(9):1387-1395
    [14] Jiang Y, Gao Q, Yu H, et al. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials[J]. Microporous and Mesoporous Materials, 2007, 103(1-3):316-324
    [15] 阴强, 李爱菊, 孙康宁, 等. Fenton试剂对碳纳米管表面改性研究[J]. 人工晶体学报, 2009, 38(6):1481-1484
    [16] Puziy A M, Poddubnaya O I, Martnez-Alonso A, et al. Synthetic carbons activated with phosphoric acid:I. Surface chemistry and ion binding properties[J]. Carbon, 2002, 40(9):1493-1505
    [17] 孙利娜, 李登新, 高国龙. 磷酸活化纺织固体废弃物制备活性炭及表征[J]. 环境科学与技术, 2010, 33(7):161-164
    [18] Krehula S, Music' S. Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media[J]. Journal of Alloys and Compounds, 2006, 416(1-2):284-290
    [19] Schrank S G, José H J, Moreira R F P M, et al. Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters[J]. Chemosphere, 2005, 60(5):644-655
    [20] Liu R, Chiu H M, Shiau C, et al. Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes[J]. Dyes and Pigments, 2007, 73(1):1-6
    [21] Chen W, Juan C, Wei K. Mineralization of dinitrotoluenes and trinitrotoluene of spent acid in toluene nitration process by Fenton oxidation[J]. Chemosphere, 2005, 60(8):1072-1079
    [22] Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chemistry of materials, 1997, 9(2):609-615
    [23] Lei Z, An L, Dang L, et al. Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation[J]. Microporous and Mesoporous Materials, 2009, 119(1/3):30-38.
  • 加载中
计量
  • 文章访问数:  1119
  • HTML全文浏览数:  1052
  • PDF下载数:  557
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-02
  • 刊出日期:  2015-09-15
刘超, 廖雷, 贾力强, 彭娟, 覃爱苗, 杨威, 罗恢泓. 芬顿试剂改性制备油茶壳吸附材料[J]. 环境化学, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202
引用本文: 刘超, 廖雷, 贾力强, 彭娟, 覃爱苗, 杨威, 罗恢泓. 芬顿试剂改性制备油茶壳吸附材料[J]. 环境化学, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202
LIU Chao, LIAO Lei, JIA Liqiang, PENG Juan, QIN Aimiao, YANG Wei, LUO Huihong. Producing modified absorption materials by Fenton[J]. Environmental Chemistry, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202
Citation: LIU Chao, LIAO Lei, JIA Liqiang, PENG Juan, QIN Aimiao, YANG Wei, LUO Huihong. Producing modified absorption materials by Fenton[J]. Environmental Chemistry, 2015, 34(9): 1729-1734. doi: 10.7524/j.issn.0254-6108.2015.09.2015040202

芬顿试剂改性制备油茶壳吸附材料

  • 1.  桂林理工大学环境科学与工程学院, 广西危险废物处置产业化人才小高地, 桂林, 541006;
  • 2.  广西环境污染控制理论与技术重点实验室, 桂林, 541006;
  • 3.  桂林理工大学材料科学与工程学院, 桂林, 541004
基金项目:

国家自然科学基金(51468011)

广西高校专利倍增计划(2013ZL06,2013ZL062)资助.

摘要: 利用廉价的农业废弃物油茶壳,以磷酸作为活化剂,料液比1:5(W:W),活化温度500℃,活化时间2 h条件下制备了油茶果壳炭,再经芬顿试剂10:1(N:N)进行改性,制备了新型的吸附材料.通过扫描电镜SEM观察吸附剂表面形貌,傅里叶红外光谱FT-IR分析其表面官能团,X-射线粉末衍射分析其晶型结构,N2吸附-脱附分析其比表面积大小及孔径分布.结果表明,羟基自由基改性材料孔隙结构表层部分被覆盖,不含铁矿物晶体,表面产生了大量的羟基、羰基、羧基基团,能够有效地改善油茶果壳炭的吸附效果; 油茶果壳炭改性前后比表面积分别为1244 m2·g-1、167 m2·g-1,平均孔径分别为3.284 nm和4.021 nm,说明材料孔道没有被堵塞.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回