α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性

李时政, 马嫣, 郑军, 姚磊, 周瑶瑶, 王振. α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性[J]. 环境化学, 2015, 34(9): 1633-1641. doi: 10.7524/j.issn.0254-6108.2015.09.2015021002
引用本文: 李时政, 马嫣, 郑军, 姚磊, 周瑶瑶, 王振. α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性[J]. 环境化学, 2015, 34(9): 1633-1641. doi: 10.7524/j.issn.0254-6108.2015.09.2015021002
LI Shizheng, MA Yan, ZHENG Jun, YAO Lei, ZHOU Yaoyao, WANG Zhen. Physicochemical properties and cloud nucleating abilities of secondary organic aerosol from α-pinene ozonolysis[J]. Environmental Chemistry, 2015, 34(9): 1633-1641. doi: 10.7524/j.issn.0254-6108.2015.09.2015021002
Citation: LI Shizheng, MA Yan, ZHENG Jun, YAO Lei, ZHOU Yaoyao, WANG Zhen. Physicochemical properties and cloud nucleating abilities of secondary organic aerosol from α-pinene ozonolysis[J]. Environmental Chemistry, 2015, 34(9): 1633-1641. doi: 10.7524/j.issn.0254-6108.2015.09.2015021002

α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性

  • 基金项目:

    国家自然科学基金(21377059,41275142)

    江苏省自然科学基金(BK2012861)

    江苏省六大人才高峰项目(JNHB-006)资助.

Physicochemical properties and cloud nucleating abilities of secondary organic aerosol from α-pinene ozonolysis

  • Fund Project:
  • 摘要: 采用环境烟雾箱模拟实验,在近大气条件下研究了α-蒎烯气相臭氧氧化反应.通过气体与气溶胶膜采样进样口FIGAERO(Filter Inlet for Gas and AEROsols)与高分辨率飞行时间化学电离质谱(HRToF-CIMS)联用对颗粒相产物进行了鉴别,鉴别结果表明,颗粒相产物中浓度最高的是蒎酮醛,其它主要产物包括蒎酮酸、蒎醛酸、降蒎酮酸、降蒎醛酸和蒎酸.采用扫描电迁移率粒径谱仪(SMPS)、气溶胶质量分析仪(APM)与云凝结核计数器(CCNC)联用考察了臭氧氧化反应生成的二次有机气溶胶(SOA)的粒径谱分布、密度、产率以及云凝结核活性发现,随着臭氧氧化反应的进行,SOA的密度、质量浓度以及云凝结核活性均呈上升趋势.同时研究了重要的大气物种SO2对α-蒎烯臭氧氧化反应的影响,实验结果表明,SO2能大大促进气溶胶成核,气溶胶数浓度、质量浓度和产率均提高,同时云凝结核活性也显著增强,其可能的机制是反应中稳定化的Criegee中间体与SO2反应生成硫酸.
  • 加载中
  • [1] Seinfeld J H,Pandis S N. Atmospheric Chemistry and Physics:From Air Pollution to Climate Change[M].New York:Wiley-Interscience,1998
    [2] 汪午,王省良,李黎,等. 天然源二次有机气溶胶的研究进展[J]. 地球化学,2008,37(1):77-86
    [3] Charlson R L,Schwartz S,Hales J M,et al. Climate forcing by anthropogenic aerosols[J]. Science,1992,255(5043):423-430
    [4] Kanakidou M,Seinfeld J H,Pandis S N,et al. Organic aerosol and global climate modeling:A review[J]. Atmospheric Chemistry and Physics,2005,5(4):1053-1123
    [5] Griffin R J,Cocker D R,FlaganR C,et al. Organic aerosol formation from the oxidation of biogenic hydrocarbons[J]. Journal of Geophysical Research,1999,104:3555-3567
    [6] 杨晓璐,陈建华,邓建国,等. 烯烃臭氧化反应机制的研究进展[J].环境化学,2013,32(11):2050-2058
    [7] Glasius M,Lahaniati M,Calogirou A,et al. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone[J]. Environmental Science & Technology,2000,34:1001-1010
    [8] Ma Y,Russell A T,Marston G. Mechanism for the formation of secondary organic aerosol components from the gas-phase ozonolysisof α-pinene[J]. Physical Chemistry Chemical Physics,2008,10:4294-4312
    [9] Camredon M, Hamilton J F, Alam M S,et al.Distribution of gaseous and particulate organic compositionduring dark α-pinene ozonolysis[J]. Atmospheric Chemistry and Physics,2010,10:2893-2917
    [10] 刘兆荣,曾立民,陈忠明,等. 单萜烯臭氧化反应产物的研究[J]. 环境化学,1999,18(4):321-326
    [11] Lee B H, Pierce J R, Engelhart G J. Volatility of secondary organic aerosol from the ozonolysis of monoterpenes[J]. Atmospheric Environment,2011,45:2443-2452.
    [12] Zhao Z, Hao J M, Li J H, et al. Second organic aerosol formation from the ozonolysis of a-pinene in the presence of dry submicron ammonium sulfate aerosol[J]. Journal of Environmental Sciences,2008, 20(10):1183-1188
    [13] 袁成, 马嫣, 陈敏东. 烯烃气相臭氧化反应机理的研究进展[J]. 环境化学,2013,32(2):177-187
    [14] Moore R H,Nenes A,Medina J. Scanning mobility CCN analysis-a method for fast measurements of size-resolved CCN distributions and activation kinetics[J]. Aerosol Science & Technology,2010,44:861-871
    [15] Lopez-Hilfiker F D,Mohr C,Ehn M,et al. A novel method for online analysis of gas and particle composition:Description and evaluation of a Filter Inlet for Gases and AEROsols(FIGAERO)[J]. Atmospheric Measurement Technology,2014,7:983-1001
    [16] Huey L G. Measurement of trace atmospheric species by chemical ionization mass spectrometry:Speciation of reactive nitrogen and future directions[J]. Mass Spectrometry Reviews,2007,26:166-184
    [17] Sellegri K,Umann B,HankeM,et al.Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign[J]. Atmospheric Chemistry and Physics,2005,5:357-372
    [18] Kurtén T, Bonn B, Vehkamäki H, et al. Computational study of the reaction between biogenic stabilized Criegee intermediates and sulfuric acid[J]. Journal of Physical Chemistry A,2007,111:3394-3401
    [19] Jiang L, Xu Y S, Ding A Z. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide:ab initio and DFT study[J]. Journal of Physical Chemistry A,2010,114:12452-12461
    [20] Sipilä M, Jokinen T, Berndt T, et al. Reactivity of stabilized Criegee intermediates (sCI) from isoprene and monoterpene ozonolysis toward SO2and organic acids[J]. Atmospheric Chemistry and Physics,2014,14:12143-12153
    [21] Boy M, Mogensen D, Smolander S, et al. Oxidation of SO2 by stabilized Criegee Intermediate (sCI) radicals as a crucial source for atmospheric sulphuric acid concentrations[J]. Atmospheric Chemistry and Physics,2013,13:3865-3879
    [22] Mauldin III R L,Berndt T,Sipilä M,et al. A new atmospherically relevant oxidant of sulphurdioxide[J]. Nature,2012,488:193-196
    [23] Vereecken L,Harder H,Novelli A. The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere[J]. Physical Chemistry Chemical Physics,2012,14:14682-14695
    [24] Kulmala M,Riipinen I,Sipilä M,et al. Toward direct measurement of atmospheric nucleation[J]. Science,2007,318:89-92
    [25] Zhang R,Suh I,Zhao J,et al. Atmospheric new particle formation enhanced by organic acids[J]. Science,2004,304:1487-1490
    [26] Zhao J,KhalizovA,Zhang R. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors[J]. Journal of Physical Chemistry A,2009,113(4):680-689
    [27] Xu Y,Nadykto A,Yu F. Interaction between common organic acids and trace nucleation species in the earth's atmosphere[J]. Journal of Physical Chemistry A,2010,114(1):387-396
    [28] Lee A,Goldstein A H,Keywood M D,et al. Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes[J].Journal of Geophysical Research,2006,111:D07302,doi:10.1029/2005JD006437
    [29] Turpin B J,Lim H J. Speciescontributions to PM2.5 mass concentrations:revisiting common assumptions for estimating organic mass[J]. Aerosol Science & Technology,2001,35:602-610
    [30] Petters M D,Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics,2007,7:1961-1971
    [31] Jimenez J L,Canagaratna M R,Donahue N M,et al. Evolution of organic aerosols in the atmosphere[J]. Science,2009,326:1525-1529
    [32] Huff Hartz K,EThomas R,Shaun R F,et al. Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol[J]. Journal of Geophysical Research,2005,110:D14208,doi:10.1029/2004JD005754
    [33] Tang X,Cocker D R,Awuku A A. Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN[J]. Atmospheric Chemistry and Physics,2012,12:8377-8388
  • 加载中
计量
  • 文章访问数:  1256
  • HTML全文浏览数:  1166
  • PDF下载数:  998
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-10
  • 刊出日期:  2015-09-15

α-蒎烯臭氧氧化反应中二次有机气溶胶理化特性与云凝结核活性

  • 1. 南京信息工程大学环境科学与工程学院;江苏省大气环境监测与污染控制高技术研究重点实验室, 南京, 210044
基金项目:

国家自然科学基金(21377059,41275142)

江苏省自然科学基金(BK2012861)

江苏省六大人才高峰项目(JNHB-006)资助.

摘要: 采用环境烟雾箱模拟实验,在近大气条件下研究了α-蒎烯气相臭氧氧化反应.通过气体与气溶胶膜采样进样口FIGAERO(Filter Inlet for Gas and AEROsols)与高分辨率飞行时间化学电离质谱(HRToF-CIMS)联用对颗粒相产物进行了鉴别,鉴别结果表明,颗粒相产物中浓度最高的是蒎酮醛,其它主要产物包括蒎酮酸、蒎醛酸、降蒎酮酸、降蒎醛酸和蒎酸.采用扫描电迁移率粒径谱仪(SMPS)、气溶胶质量分析仪(APM)与云凝结核计数器(CCNC)联用考察了臭氧氧化反应生成的二次有机气溶胶(SOA)的粒径谱分布、密度、产率以及云凝结核活性发现,随着臭氧氧化反应的进行,SOA的密度、质量浓度以及云凝结核活性均呈上升趋势.同时研究了重要的大气物种SO2对α-蒎烯臭氧氧化反应的影响,实验结果表明,SO2能大大促进气溶胶成核,气溶胶数浓度、质量浓度和产率均提高,同时云凝结核活性也显著增强,其可能的机制是反应中稳定化的Criegee中间体与SO2反应生成硫酸.

English Abstract

参考文献 (33)

目录

/

返回文章
返回