不同光谱区间日光照射下水体成分的光致羟基自由基生成研究

王静, 邢梦林, 邰超, 赵同谦, 阴永光. 不同光谱区间日光照射下水体成分的光致羟基自由基生成研究[J]. 环境化学, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402
引用本文: 王静, 邢梦林, 邰超, 赵同谦, 阴永光. 不同光谱区间日光照射下水体成分的光致羟基自由基生成研究[J]. 环境化学, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402
WANG Jing, XING Menglin, TAI Chao, ZHAO Tongqian, YIN Yongguang. Generation of hydroxyl radical from water constituents under different spectra bands of sunlight[J]. Environmental Chemistry, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402
Citation: WANG Jing, XING Menglin, TAI Chao, ZHAO Tongqian, YIN Yongguang. Generation of hydroxyl radical from water constituents under different spectra bands of sunlight[J]. Environmental Chemistry, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402

不同光谱区间日光照射下水体成分的光致羟基自由基生成研究

  • 基金项目:

    国家自然科学基金(41371501, 21377156),河南理工大学杰出青年(HPUJ2013-04)资助.

Generation of hydroxyl radical from water constituents under different spectra bands of sunlight

  • Fund Project:
  • 摘要: 本文对硝酸根、亚硝酸根、过氧化氢和可溶性有机质(Dissolved organic matter, DOM)等4种水体成分在不同波段的太阳光照射下羟基自由基的光化学生成情况进行了研究. 结果表明,硝酸根、亚硝酸根和过氧化氢三者的光致羟基自由基生成速率(vs.光通量)与其浓度之间有良好的线性关系,说明三者的光致羟基自由基生成是三者直接光解产生羟基自由基,都为一级反应,单位浓度(mol·L-1)的硝酸根、亚硝酸根、过氧化氢的羟基自由基生成速率分别为13.6、2.11×103、2.90×102 μmol·L-1·E-1·m2;DOM的光化学过程可以产生羟基自由基,但羟基自由基生成速率与DOM浓度间不存在明显的线性关系,具体的原因可能是DOM光致羟基自由基生成可经由非过氧化氢途径(途径1,DOM直接光解)和过氧化氢途径(途径2,过氧化氢光解)两种途径生成,而高浓度DOM的存在会产生较强的滤光作用,同时也会阻断途径2中过氧化氢的生成,降低羟基自由基的生成速率;不同光谱区间的日光对4种成分的羟基自由基贡献不同,可见光区对4种组分贡献均远小于紫外区,紫外区UVA和UVB对硝酸根和过氧化氢的羟基自由基光化学生成贡献较为接近,UVA和UVB对亚硝酸根和DOM的羟基自由基光化学生成贡献存在明显差异,差异的产生由水体成分对太阳光谱的吸收性质和太阳光谱能量分布共同决定.
  • 加载中
  • [1] BODRATO M, VIONE D. APEX (aqueous photochemistry of environmentally occurring xenobiotics): A free software tool to predict the kinetics of photochemical processes in surface waters[J]. Environmental Science-Processes Impacts, 2014, 16(4): 732-740
    [2] PASSANANT M, TEMUSSI F, IESCE M R, et al. The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation in mimic and natural waters[J]. Water Research, 2013, 47(14): 5422-5430
    [3] MINELLA M, MAURINO V, MINERO C, et al. Modelling photochemical transformation of emerging organic pollutants in surface waters: Effect of water level fluctuations following outflow or evaporation, relevant to arid and semi-arid environments[J]. International Journal of Environmental Analytical Chemistry, 2013, 93(15SI): 1698-1717
    [4] 张彭义, 余刚, 蒋展鹏. 水中有机物与羟基自由基反应的QSAR分析[J]. 环境化学, 1999, 18(3): 232-237
    [5] MINERO C, CHIRON S,FALLETTI G,et al. Photochemincal processes involving nitrite in surface water samples[J]. Aquatic Sciences, 2007, 69(1): 71-85
    [6] GOLDSTEIN S,RABANI J. Mechanism of nitrite formation by nitrate photolysis in aqueous solutions: the role of peroxynitrite, nitrogen dioxide, and hydroxyl radical[J]. Journal of the American Chemical Society, 2007, 129(34): 10597-10601
    [7] GRANNAS A M, MARTIN C B,CHIN Y P,et al. Hydroxyl radical production from irradiated arctic dissolved organic matter[J]. Biogeochemistry, 2006, 78(1): 51-66
    [8] VIONE D, LAURI V,MINERO C,et al. Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight[J]. Aquatic Sciences, 2009, 71(1): 34-45
    [9] MINELLA M, De LAURENTIIS E,BUHVESTOVA O,et al. Modelling lake-water photochemistry: three-decade assessment of the steady-state concentration of photoreactive transients (·OH, ·CO-3 and 3CDOM*) in the surface water of PolymicticLake Peipsi (Estonia/Russia)[J]. Chemosphere, 2013, 90(10): 2589-2596
    [10] MINERO C, LAURI V,MAURINO V,et al. A model to predict the steady-state concentration of hydroxyl radicals in the surface layer of natural waters[J].Annali Di Chimica, 2007, 97(8): 685-698
    [11] KING M D, FRANCE J L,FISHER F N,et al. Measurement and modelling of UV radiation penetration and photolysis rates of nitrate and hydrogen peroxide in Antarctic sea ice: An estimate of the production rate of hydroxyl radicals in first-year sea ice[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2005, 176(1-3): 39-49
    [12] MOPPER K,ZHOU X. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes[J]. Science, 1990, 250(4981): 661-664
    [13] ZHOU X,MOPPER K. Determination of photochemically produced hydroxyl radicals in seawater and freshwater[J]. Marine Chemistry, 1990, 30:71-88
    [14] TAKEDA K, TAKEDOI H,YAMAJI S,et al. Determination of hydroxyl radical photoproduction rates in natural waters[J]. Analytical Sciences, 2004, 20(1): 153-158
    [15] VIONE D, FALLETTI G,MAURINO V,et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J]. Environmental Science Technology, 2006, 40(12): 3775-3781
    [16] MARCHISIO A, MINELLA M,MAURINO V,et al. Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters[J]. Water Research, 2015, 73:145-156
    [17] VIONE D, MINELLA M,MAURINO V,et al. Indirect photochemistry in sunlit surface waters: Photoinduced production of reactive transient species[J]. Chemistry-A European Journal, 2014, 20(34SI): 10590-10606
    [18] 邰超, 韩丹,阴永光,等. 二甲亚砜捕获-高效液相色谱测定天然水体中羟基自由基的光化学生成[J]. 环境化学, 2015, 34(2): 212-218
    [19] ROSENFELDT E J,LINDEN K G. The R-OH, R-UV concept to characterize and the model UV/H2O2 process in natural waters[J]. Environmental Science Technology, 2007, 41(7): 2548-2553
    [20] DE LAURENTIIS E, BUOSO S,MAURINO V,et al. Optical and photochemical characterization of chromophoric dissolved organic matter from lakes in Terra Nova bay, Antarctica. Evidence of considerable photoreactivity in an extreme environment[J]. Environmental Science Technology, 2013, 47(24): 14089-14098
    [21] PAGE S E, LOGAN J R,CORY R M,et al. Evidence for dissolved organic matter as the primary source and sink of photochemicallyproduced hydroxyl radical in arctic surface waters[J]. Environmental Science-Processes Impacts, 2014, 16(4): 807-822
    [22] NAKATANI N, UEDA M,SHINDO H,et al. Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples[J]. Analytical Sciences, 2007, 23(9): 1137-1142
    [23] APPIAN E, PAGE S E,MCNEILL K. On the use of hydroxyl radical kinetics to assess the number-average molecular weight of dissolved organic matter[J]. Environmental Science Technology, 2014, 48(20): 11794-11802
    [24] LI Y B, MAO Y X,LIU G L,et al. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades[J]. Environmental Science Technology, 2010, 44(17): 6661-6666
    [25] THOMAS-SMITH T E,BLOUGH N V. Photoproduction of hydrated electron from constituents of natural waters[J]. Environmental Science Technology, 2001, 35(13): 2721-2726
    [26] MCKAY G,ROSARIO-ORTIZ F L. Temperature dependence of the photochemical formation of hydroxyl radical from dissolved organic matter[J]. Environmental Science Technology, 2015, 49(7): 4147-4154
    [27] GOLDSTONE J V,VOELKER B M. Chemistry of superoxide radical in seawater:CDOM associated sink of superoxide in coastal waters[J]. Environmental Science Technology, 2000, 34(6): 1043-1048
    [28] 张琳, 张喆,吴峰,等. 水中铁(Ⅲ)-草酸盐配合物光解产生羟基自由基的测定[J]. 环境化学, 2002,21 (1): 87-91
    [29] WHITE E M, VAUGHAN P P,ZEPP R G. Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States[J]. Aquatic Sciences, 2003, 65(4): 402-414
    [30] STAIR R. Ultraviolet spectral distribution of radiant energy from the sun[J]. Journal of Research of National Bureau of Stands,1951, 46(5): 353-357
    [31] VAUGHAN P P,BLOUGH N V. Photochemical formation of hydroxyl radical by constituents of natural waters[J]. Environmental Science Technology, 1998, 32(19): 2947-2953
  • 加载中
计量
  • 文章访问数:  2860
  • HTML全文浏览数:  2799
  • PDF下载数:  742
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-06-04
  • 刊出日期:  2015-12-15
王静, 邢梦林, 邰超, 赵同谦, 阴永光. 不同光谱区间日光照射下水体成分的光致羟基自由基生成研究[J]. 环境化学, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402
引用本文: 王静, 邢梦林, 邰超, 赵同谦, 阴永光. 不同光谱区间日光照射下水体成分的光致羟基自由基生成研究[J]. 环境化学, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402
WANG Jing, XING Menglin, TAI Chao, ZHAO Tongqian, YIN Yongguang. Generation of hydroxyl radical from water constituents under different spectra bands of sunlight[J]. Environmental Chemistry, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402
Citation: WANG Jing, XING Menglin, TAI Chao, ZHAO Tongqian, YIN Yongguang. Generation of hydroxyl radical from water constituents under different spectra bands of sunlight[J]. Environmental Chemistry, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402

不同光谱区间日光照射下水体成分的光致羟基自由基生成研究

  • 1.  河南理工大学资源环境学院, 焦作, 454000;
  • 2.  河南省环境监测中心, 郑州, 450004;
  • 3.  环境化学与生态毒理学国家重点实验室, 中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家自然科学基金(41371501, 21377156),河南理工大学杰出青年(HPUJ2013-04)资助.

摘要: 本文对硝酸根、亚硝酸根、过氧化氢和可溶性有机质(Dissolved organic matter, DOM)等4种水体成分在不同波段的太阳光照射下羟基自由基的光化学生成情况进行了研究. 结果表明,硝酸根、亚硝酸根和过氧化氢三者的光致羟基自由基生成速率(vs.光通量)与其浓度之间有良好的线性关系,说明三者的光致羟基自由基生成是三者直接光解产生羟基自由基,都为一级反应,单位浓度(mol·L-1)的硝酸根、亚硝酸根、过氧化氢的羟基自由基生成速率分别为13.6、2.11×103、2.90×102 μmol·L-1·E-1·m2;DOM的光化学过程可以产生羟基自由基,但羟基自由基生成速率与DOM浓度间不存在明显的线性关系,具体的原因可能是DOM光致羟基自由基生成可经由非过氧化氢途径(途径1,DOM直接光解)和过氧化氢途径(途径2,过氧化氢光解)两种途径生成,而高浓度DOM的存在会产生较强的滤光作用,同时也会阻断途径2中过氧化氢的生成,降低羟基自由基的生成速率;不同光谱区间的日光对4种成分的羟基自由基贡献不同,可见光区对4种组分贡献均远小于紫外区,紫外区UVA和UVB对硝酸根和过氧化氢的羟基自由基光化学生成贡献较为接近,UVA和UVB对亚硝酸根和DOM的羟基自由基光化学生成贡献存在明显差异,差异的产生由水体成分对太阳光谱的吸收性质和太阳光谱能量分布共同决定.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回