基于粒径分布的城镇污水有机组分赋存特征调查

李衍博, 王旭, 刘俊新. 基于粒径分布的城镇污水有机组分赋存特征调查[J]. 环境化学, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001
引用本文: 李衍博, 王旭, 刘俊新. 基于粒径分布的城镇污水有机组分赋存特征调查[J]. 环境化学, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001
LI Yanbo, WANG Xu, LIU Junxin. Occurrence characteristics of organic components in domestic sewage in terms of particle size distribution[J]. Environmental Chemistry, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001
Citation: LI Yanbo, WANG Xu, LIU Junxin. Occurrence characteristics of organic components in domestic sewage in terms of particle size distribution[J]. Environmental Chemistry, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001

基于粒径分布的城镇污水有机组分赋存特征调查

  • 基金项目:

    国家自然科学基金(51408589

    51138009)资助.

Occurrence characteristics of organic components in domestic sewage in terms of particle size distribution

  • Fund Project:
  • 摘要: 本文以京津地区城镇污水为研究对象,利用滤膜法从粒径分布角度分析了城镇污水中总有机物与蛋白质、糖类、脂类及挥发性有机酸等有机组分的浓度水平,进而利用统计学手段解析其赋存特征.结果表明,蛋白类有机组分所占比例最高(46.9%-48.3%),而糖类(4.7%-11.0%)和脂类(3.4%-11.8%)含量相对较低,并且蛋白质类在不同粒径范围内均为占优组分.另外,调查区域的污水样品中富含颗粒态(>100 μm)及超胶体态(100-1 μm)有机物,而胶体态(1-0.15 μm)有机质含量最低;Spearman相关分析亦指出颗粒态和溶解态(<0.001 μm)有机物在污水中存在类似的环境归趋.从本研究结果来看,该区域污水处理厂可在保障水质达标的前提下,采取有效的固液分离及碳质转化手段,提高大粒径态有机物的资源化利用率.
  • 加载中
  • [1] 易建婷,张成,徐凤,等. 全国投运城镇污水处理设施现状与发展趋势分析[J]. 环境化学,2015,34(9):1654-1660
    [2] 王晓昌,金鹏康,赵红梅,等. 城市生活污水中的污染物分类及处理性评价[J]. 给水排水,2004,9:38-41
    [3] Huang M H, Li Y M, Gu G W. Chemical composition of organic matters in domestic wastewater[J]. Desalination, 2010, 262(1-3):36-42
    [4] Gorini D, Choubert J M, Pimpec P, et al. Concentrations and fate of sugars, proteins and lipids during domestic and agro-industrial aerobic treatment[J]. Water Science & Technology, 2011, 63(8):1669-1677
    [5] Hocaoglu S M, Insel G, Cokgor E U, et al. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water[J]. Bioresource Technology, 2011, 102(6):4333-4340
    [6] Wang X, Liu J X, Ren N Q, et al. Assessment of multiple sustainability demands for wastewater treatment alternatives:a refined evaluation scheme and case study[J]. Environmental Science & Technology, 2012, 46(10):5542-5549
    [7] McCarty P L, Bae J,Kim J. Domestic wastewater treatment as a net energy producer-can this be achieved? [J]. Environmental Science & Technology, 2011, 45(17):7100-7106
    [8] 杨鲁豫,王琳,王宝贞. 我国水资源污染治理的技术策略[J]. 给水排水,2001,1:94-101
    [9] Shin C, McCarty P L, Kim J, et al. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) [J]. Bioresource Technology, 2014, 159:95-103
    [10] Smith A L, Stadler L B, Love N G, et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review[J]. Bioresource Technology, 2012, 122:149-159
    [11] 任南琪,李永峰,李建政,等. 中国发酵法生物制氢技术研究进展[J]. 化工学报,2004,S1:7-13
    [12] Li C L, Fang H H P. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures[J]. Critical Reviews in Environmental Science and Technology, 2007, 37(1):1-39
    [13] Wang J L, Wan W. Factors influencing fermentative hydrogen production: A review[J]. International Journal of Hydrogen Energy, 2009, 34(2):799-811
    [14] 王万成,陶冠红. 微生物燃料电池运行条件的优化[J]. 环境化学,2008,27(4):527-530
    [15] Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337(6095):686-690
    [16] 尤世界,赵庆良,姜珺秋. 废水同步生物处理与生物燃料电池发电研究[J]. 环境科学,2006,27(9):1786-1790
    [17] Gori R, Jiang L M, Sobhani R, et al. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes[J]. Water Research, 2011, 45(18):5858-5872
    [18] Wang X, Liu J X, Qu B, et al. Role of carbon substrates in facilitating energy reduction and resource recovery in a traditional activated sludge process: Investigation from a biokinetics modeling perspective[J]. Bioresource Technology, 2013, 140:312-318
    [19] Heukelekian H, Balmat J L. Chemical composition of the particulate fractions of domestic sewage[J]. Sewage and Industrial Wastes, 1959, 31(4):413-423
    [20] Raunkjaer K, Hvitvedjacobsen T, Nielsen P H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater[J]. Water Research, 1994, 28(2):251-262
    [21] Balmat J L. Biochemical oxidation of various particulate fractions of sewage[J]. Sewage and Industrial Wastes, 1957, 29(7):757-761
    [22] Hu Z Q, Chandran K, Smets B F, et al. Evaluation of a rapid physical-chemical method for the determination of extant soluble COD[J]. Water Research, 2002, 36(3):617-624
    [23] Sophonsiri C, Morgenroth E. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters[J]. Chemosphere, 2004, 55(5):691-703
    [24] Rickert D A, Hunter J V. General nature of soluble and particulate organics in sewage and secondary effluent[J]. Water Research, 1971, 5(7):421-436
    [25] Dulekgurgen E, Dogruel S, Karahan O, et al. Size distribution of wastewater COD fractions as an index for biodegradability[J]. Water Research, 2006, 40(2):273-282
    [26] 黄满红. 厌氧-缺氧-好氧活性污泥系统中典型有机物迁移转化研究[D]. 上海: 同济大学环境科学与工程学院,2006
    [27] 南海涛,曾杰,王新霞. 城市污水中TOC与COD的关系[J]. 中国给水排水,2002,06:80-81
    [28] Levine A D, Tchobanoglous G, Asano T. Size distributions of particulate contaminants in wastewater and their impact on treatability[J]. Water Research, 1991, 25(8):911-922
    [29] Munch R, Hwang C P, Lackie T H. Wastewater fractions add to total treatment picture[J]. Water & Sewage Works, 1980, 127(12):49-54
    [30] Karahan O, Dogruel S, Dulekgurgen E, et al. COD fractionation of tannery wastewaters-particle size distribution, biodegradability and modeling[J]. Water Research, 2008, 42(4-5):1083-1092
    [31] Larsen T A, Harremoes P. Degradation mechanisms of colloidal organic matter in biofilm reactors[J]. Water Research, 1994, 28(6):1443-1452
    [32] VanLoosdrecht M C M, Kuba T, VanVeldhuizen H M, et al. Environmental impacts of nutrient removal processes: Case study[J]. Journal of Environmental Engineering-Asce, 1997, 123(1):33-40
    [33] Ubukata Y. The role of particulate organic matter and acetic acid in the removal of phosphate in anaerobic/aerobic activated sludge processes[J]. Engineering in Life Sciences, 2007, 7(1):61-66
    [34] 黄满红,李咏梅,顾国维. 蛋白质在城市污水活性污泥处理系统中的降解动力学模型研究[J]. 环境化学,2009,28(3):404-408
    [35] Ginestet P, Maisonnier A, Sperandio M. Wastewater COD characterization: biodegradability of physico-chemical fractions[J]. Water Science and Technology, 2002, 45(6):89-97
    [36] Dimock R, Morgenroth E. The influence of particle size on microbial hydrolysis of protein particles in activated sludge[J]. Water Research, 2006, 40(10):2064-2074
    [37] Confer D R, Logan B E. Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures[J]. Water Research, 1998, 32(1):31-38
    [38] Puigagut J, Salvado H, Tarrats X, et al. Effects of particulate and soluble substrates on microfauna populations and treatment efficiency in activated sludge systems[J]. Water Research, 2007, 41(14):3168-3176
    [39] Dignac M F, Ginestet P, Rybacki D, et al. Fate of wastewater organic pollution during activated sludge treatment: Nature of residual organic matter[J]. Water Research, 2000, 34(17):4185-4194
    [40] Nielsen P H, Raunkjaer K, Norsker N H, et al. Transformation of wastewater in sever systems-A Review[J]. Water Science and Technology, 1992, 25(6):17-31
    [41] Rudelle E, Vollertsen J, Hvitved-Jacobsen T, et al. Anaerobic transformations of organic matter in collection systems[J]. Water Environment Research, 2011, 83(6):532-540
    [42] Metcalf, Eddy. Wastewater engineering: Treatment and reuse (fourth edition). Vol. 2[M]. McGraw-Hill Companies, 2003.
    [43] Narkis N, Henfeldfurie S. Direct analytical procedure for determination of volatile organic-acids in raw municipal wastewater[J]. Water Research, 1978, 12(7):437-446
    [44] Henze M. Characterization of wastewater for modeling of activated-sludge processes[J]. Water Science and Technology, 1992, 25(6):1-15
  • 加载中
计量
  • 文章访问数:  1405
  • HTML全文浏览数:  1318
  • PDF下载数:  720
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-10
  • 刊出日期:  2015-12-15
李衍博, 王旭, 刘俊新. 基于粒径分布的城镇污水有机组分赋存特征调查[J]. 环境化学, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001
引用本文: 李衍博, 王旭, 刘俊新. 基于粒径分布的城镇污水有机组分赋存特征调查[J]. 环境化学, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001
LI Yanbo, WANG Xu, LIU Junxin. Occurrence characteristics of organic components in domestic sewage in terms of particle size distribution[J]. Environmental Chemistry, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001
Citation: LI Yanbo, WANG Xu, LIU Junxin. Occurrence characteristics of organic components in domestic sewage in terms of particle size distribution[J]. Environmental Chemistry, 2015, 34(12): 2153-2161. doi: 10.7524/j.issn.0254-6108.2015.12.2015091001

基于粒径分布的城镇污水有机组分赋存特征调查

  • 1. 中国科学院生态环境研究中心, 北京, 100085
基金项目:

国家自然科学基金(51408589

51138009)资助.

摘要: 本文以京津地区城镇污水为研究对象,利用滤膜法从粒径分布角度分析了城镇污水中总有机物与蛋白质、糖类、脂类及挥发性有机酸等有机组分的浓度水平,进而利用统计学手段解析其赋存特征.结果表明,蛋白类有机组分所占比例最高(46.9%-48.3%),而糖类(4.7%-11.0%)和脂类(3.4%-11.8%)含量相对较低,并且蛋白质类在不同粒径范围内均为占优组分.另外,调查区域的污水样品中富含颗粒态(>100 μm)及超胶体态(100-1 μm)有机物,而胶体态(1-0.15 μm)有机质含量最低;Spearman相关分析亦指出颗粒态和溶解态(<0.001 μm)有机物在污水中存在类似的环境归趋.从本研究结果来看,该区域污水处理厂可在保障水质达标的前提下,采取有效的固液分离及碳质转化手段,提高大粒径态有机物的资源化利用率.

English Abstract

参考文献 (44)

返回顶部

目录

/

返回文章
返回