Fe2O3微纳米材料对八氯萘的热催化降解及其机制研究
Catalytic thermal degradation of octachloronaphthalene over Fe2O3 micro/nanomaterial and its explored mechanism
-
摘要: 本文研究了制备的α-Fe2O3微/纳米材料对八氯萘(octachloronaphthalene,CN-75)的催化降解活性及降解机制.在300 ℃下动力学研究发现,α-Fe2O3降解CN-75的反应行为呈现准一级动力学反应特征,反应速率常数为0.075 min-1.在α-Fe2O3催化下CN-75能够发生逐级加氢脱氯反应,生成一系列的七氯至二氯萘产物,且初始加氢脱氯优先发生在α位.此外,CN-75还能发生氧化开环反应生成甲酸、乙酸等中间产物.根据检测到的降解产物推测CN-75在α-Fe2O3上的降解反应历程为:CN-75→CN-73→CN-66/67→CN-54、CN-52、CN-51、CN-50→……→HCOOH+CH3COOH.Abstract: Degradation of octachloronaphthalene(CN-75) was performed over as-prepared α-Fe2O3 micro/nano materials. The degradation process conforms to the first order reaction kinetics with kobs=0.075 min-1 at 300 ℃.The identification of heptachloronaphthalene to dichloronaphthalene as the products indicates the occurrence of successive hydrodechlorination reactions during the degradation of CN-75 over the prepared α-Fe2O3. The Cl atom at α-position was removed preferentially the β-position. Furthermore, the oxidative products, such as formic and acetic acids, were identified simultaneously, suggesting that CN-75 can be ring-cracked into small organic molecules. According to the identified products,the pathway for the degradation of CN-75 over α-Fe2O3 was speculated as the following:CN-75→CN-73→CN-66/67→CN-54、CN-52、CN-51、CN-50→……→HCOOH+CH3COOH.
-
Key words:
- octachloronaphthalene /
- α-Fe2O3 /
- Fe3O4 /
- successive hydrodechlorination
-
-
[1] Pan X H,Tang J H,Chen Y J,et al. Polychlorinated naphthalenes (PCNs) in riverine and marine sediments of the Laizhou Bay area,north China[J].Environmental pollution,2011,159 (12):3515-3521 [2] Nomura Y,Aono S,Arino T,et al. Degradation of polychlorinated naphthalene by mechanochemical treatment[J]. Chemosphere,2013,93 (11):2657-2661 [3] 郭丽,巴特,郑明辉,等.多氯萘的研究[J]. 化学进展,2009,21(2/3):377 -388
[4] Imagawa T,Lee C W. Correlation of polychlorinated naphthalenes with polychlorinated dibenzofurans formed from waste incineration[J]. Chemosphere,2001,44 (6):1511-1520 [5] 黄蓉,张素坤,任明忠,等.高分辨率气相色谱/高分辨率质谱同位素内标法测定烟气样品中的多氯萘[J]. 环境化学,2015,34(3):529-535 [6] Nie Z Q,Liu G R,Liu W B,et al. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China[J]. Atmospheric Environment,2012,57(9):109-115 [7] Liu G R,Zheng M H,Du B,et al. Atmospheric emission of polychlorinated naphthalenes from iron ore sintering processes[J]. Chemosphere,2012,89 (4):467-472 [8] Zheng M H,Liu G R,Lu P,et al. Estimation and characterization of polychlorinated naphthalene emission from cooking industries[J]. Environmental Science & Technology,2003,14 (4):959-62 [9] Ruzo L O,Bunce N J,Safe S,et al. Photodegradation of polychkoronaphthalenes in methanol solution[J]. Bulletin of Environmental Contamination and Toxicology,1975,14 (3):341-345 [10] Jarnberg U G,Asplund L T,Egeback A L,et al. Polychlorinated naphthalene congener profiles in background sediments compared to a degraded Halowax 1014 technical mixture[J]. Environmental science & technology,1999,18(1):82-86 [11] 陈勇生,常晓青,朱琳,等. 对氯酚的生物降解及其污染土壤的生物修复探索[J]. 环境化学,1999,25(6):96-98 [12] 李璐,黄启飞,张增强,等. 水泥窑共处置污染土壤的污染排放研究[J]. 环境工程学报,2009,3(5):891-896 [13] Addink R,Olie K. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems[J]. Environmental Science & Technology,1995,29 (6):1425-1435 [14] Jung K Y,Jung Y R,Jeon J K,et al. Preparation of mesoporous V2O5/TiO2 via spray pyrolysis and its application to the catalytic conversion of 1,2-dichlorobenzene[J] Journal of Industrial and Engineering Chemistry,2011,17 (1):144-148 [15] Krishnamoorthy S,Juan A,Rivas M D. Amiridis catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides[J]. Journal of Catalysis,2000,193 (2):264-272 [16] Zhang L,Zheng M H,Liu W B,et al. A method for decomposition of hexachlorobenzene by gamma-alumina[J]. Journal of Hazardous Materials,2008,150 (3):831-834 [17] Lin S J,Su G J,Zheng M H,et al. The degradation of 1,2,4-trichlorobenzene using synthesized Co3O4 and the hypothesized mechanism[J]. Journal of hazardous materials,2011,192 (3):1697-704 [18] Ma X D,Feng X,Guo J,et al. Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres[J]. Applied Catalysis B:Environmental,2014,147(4):666-676 [19] Ma X D,Sun H W,He H,et al. Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca-Fe composite oxide catalyst[J]. Catalysis Letter,2007,119 (1-2):142-147 [20] Tanaka Y,Zhang Q,Saito F,et al. Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals[J]. Chemosphere,2005,60 (7):939-943 [21] Weber R,Sakurai T. Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst:evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics[J]. Applied Catalysis B:Environmental,2001,34 (2)A:113-127 [22] Su G J,Lu H J,Zhang L,et al. Thermal degradation of octachloronaphthalene over as-prepared Fe3O4 micro/nanomaterial and its hypothesized mechanism[J]. Environmental science & technology,2014,48 (12):6899-6908 [23] Jia M K,Su G J,Zheng M H,et al. Development of self-assembled 3D FexOy Micro/Nano materials for application in hexachlorobenzene degradation[J]. Journal of Nanoscience and Nanotechnology,2010,10(3):1-7 [24] 刘芷彤,张兵,王雯雯,等.同位素稀释气相色谱/三重四极杆串联质谱法分析环境样品中的多氯萘[J]. 色谱,2013,31(9):878-884. [25] 张洁,张江浩,张长斌,等.不同晶相结构二氧化锰催化完全氧化乙醇[J]. 物理化学学报,2015,31(2):353-359 [26] LI J W,Song C,Liu S T. Catalytic oxidation of chlorobenzene over MnO2 nanorods with different phase structures[J]. Acta Chimica Sinica,2012,70 (22):2347-2352 [27] 唐建军,范小江,邹原,等. TiO2的晶型对其可见光催化性能的影响[J]. 北京科技大学学报,2009,31(4):220-224 [28] Yamada S,Naito Y,Takada M,et al. Photodegradation of hexachlorobenzene and theoretical prediction of its degradation pathways using quantum chemical calculation[J]. Chemosphere,2008,70(4):731-736 [29] Guang Y,Mark A K. Liquid phase catalytic hydrodechlorination of chlorophenols at 273 K[J]. Catalysis Communications,2003,4 (4):195-201 [30] Huang L Y,Su G J,Zhang A Q,et al. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels[J]. Journal of Hazardous Materials,2013,261 (10):451-462 [31] Jia M K,Su G J,Zheng M H,et al. Synthesis of a magnetic micro/nano FexOy -CeO2 composite and its application for degradation of hexachlorobenzene[J]. Science China Chemistry,2010,53 (6):1266-1272 [32] Su G J,Huang L Y,Shi R F,et al. Thermal dechlorination of PCB-209 over Ca species-doped Fe2O3[J].Chemosphere,2016,144(2):81-90 [33] Zhai Z C,Wang Z Y. Computational study on the relative stability and formation distribution of 76 polychlorinated naphthalene by density functional theory[J]. Journal of Molecular Structure:Journal of Molecular Structure:Theochem,2005,724 (1-3):221-227 [34] Keum Y S,Li Q X. Photolysis of octachloronaphthalene in hexane[J]. Bulletin of Environmental Contamination and Toxicology,2004,72 (5):999-1005 [35] Vayssieres L,Sergei C S,Butorin M. One dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays [J].AdvancedMaterials,2005,17(10):2320-2323 [36] Wang X Y,Qian K,LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Applied Catalysis B:Environmental,2009,86 (3-4):166-175 [37] Lai L,Yuan L L,Lee C C,et al. Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol[J]. Catalysis Today,2008,131 (1/4):105-110 [38] Wu W H,Xu J,Zhao H M,et al. A practical approach to the degradation of polychlorinated biphenyls in transformer oil[J]. Chemosphere,2005,60 (7):944-950 -

计量
- 文章访问数: 1563
- HTML全文浏览数: 1503
- PDF下载数: 691
- 施引文献: 0