不同形貌的TiO2材料对五氯苯的热降解

李宾克, 任广军, 芦会杰, 黄林艳, 李倩倩, 黄鑫辰, 赵彦辉, 丁秀华, 苏贵金. 不同形貌的TiO2材料对五氯苯的热降解[J]. 环境化学, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802
引用本文: 李宾克, 任广军, 芦会杰, 黄林艳, 李倩倩, 黄鑫辰, 赵彦辉, 丁秀华, 苏贵金. 不同形貌的TiO2材料对五氯苯的热降解[J]. 环境化学, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802
LI Binke, REN Guangjun, LU Huijie, HUANG Linyan, LI Qianqian, HUANG Xinchen, ZHAO Yanhui, DING Xiuhua, SU Guijin. Thermal degradation of pentachlorobenzene by titania catalysts with different morphologies[J]. Environmental Chemistry, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802
Citation: LI Binke, REN Guangjun, LU Huijie, HUANG Linyan, LI Qianqian, HUANG Xinchen, ZHAO Yanhui, DING Xiuhua, SU Guijin. Thermal degradation of pentachlorobenzene by titania catalysts with different morphologies[J]. Environmental Chemistry, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802

不同形貌的TiO2材料对五氯苯的热降解

  • 基金项目:

    国家973计划(2015CB453103)

    国家自然科学基金(21377147, 21177141, 21321004)资助.

Thermal degradation of pentachlorobenzene by titania catalysts with different morphologies

  • Fund Project:
  • 摘要: 采用溶剂热法、均匀共沉淀法和溶胶-水热法分别制备出3种不同形貌的二氧化钛催化剂. 采用X射线衍射仪(XRD)、X射线能谱仪(EDX)和场发射扫描电子显微镜(SEM)对催化剂的晶型结构和微观形貌进行分析. 以五氯苯为模型污染物,分别在300 ℃、350 ℃、400 ℃条件下对3种不同形貌材料的催化活性进行评价. 结果表明,3种材料的活性强弱顺序为:均匀共沉淀法所制TiO2 > 溶胶-水热法所制TiO2 > 溶剂热法所制TiO2. 均匀共沉淀法所制TiO2在反应温度350 ℃、反应时间60 min的条件下对五氯苯的降解效率已经达到99.8%. 通过GC-MS对五氯苯的降解产物进行分析,检测到有四氯苯、三氯苯和二氯苯等生成,表明降解反应有加氢脱氯过程发生. 五氯苯加氢脱氯降解路径为:PeCB→1,2,4,5/1,2,3,5/1,2,3,4-TeCB→1,2,4/1,2,3-TrCB→DCB.
  • 加载中
  • [1] 刘莎,黄学敏,黄林艳,等. 酸碱气体对氯代芳烃削减的影响[J]. 环境化学,2014,33(5):731-738.
    [2] 复盛,国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [3] Xu Y,Zhang W. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2238-2244.
    [4] 王勇. 滑动弧等离子体降解氯苯类有机污染物的实验研究[D]. 浙江:浙江大学硕士学位论文,2013.
    [5] Zuo G M, Cheng Z X., Chen H, et al. Study on photocatalytic degradation of several volatile organic compounds[J]. Journal of Hazardous Materials, 2006, 128(2): 158-163.
    [6] 冯玺. 复合铁氧化物中空微球的制备及催化氧化氯代芳烃的性能研究[D]. 天津:南开大学硕士学位论文,2013.
    [7] Robert D, Malato S. Solar photocatalysis: a clean process for water detoxification[J]. Science of the Total Environment, 2002, 291(1): 85-97.
    [8]
    [9] Ma X, Shen J, Pu W, et al. Water-resistant Fe-Ca-Ox/TiO2 catalysts for low temperature 1,2-dichlorobenzene oxidation[J]. Applied Catalysis A: General, 2013, 466: 68-76.
    [10] 黎烈武,任广军,刘烨煊, 等. Fe3O4与钡基碱性化合物混合物对六氯苯的协同降解研究[J]. 当代化工,2013,9(1) 1201-1206.
    [11] Mitsuhashi T, Kleppa O J. Transformation enthalpies of the TiO2 polymorphs[J]. Journal of the American Ceramic Society,1979, 62(7-8): 356-357.
    [12] 张伟, 李黎武, 张茜,等. MWNTs/TiO2对典型氯苯类化合物的光催化降解研究[J]. 环境科学学报, 2012, 32(3): 631-638.
    [13] Ma X, Feng X, Guo J, et al. Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres[J]. Applied Catalysis B: Environmental, 2014, 147: 666-676.
    [14] Leutwyler W K, Bürgi S L, Burgl H. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
    [15] 张淑敏. 不同形貌TiO2的制备、表征及其性能研究[D]. 山西:中北大学硕士学位论文,2014.
    [16] 梅庆虎. 纳米TiO2的形貌控制合成及其光电性能研究[D]. 山东:齐鲁工业大学硕士学位论文, 2013.
    [17] Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method[J]. Angewandte Chemie International Edition in English, 1995, 34(18): 2014-2017.
    [18] 邓安平,黄应平,方艳芬,等. TiO2纳米管的制备和光催化降解有毒有机污染物[J]. 环境化学,2009,28(2):202-205.
    [19] 张汝冰,刘宏英,李凤生. 均匀沉淀法制备纳米TiO2及其在环保方面的应用[J]. 环境化学,1999,18(6):579-583.
    [20] 雷闫盈, 俞行. 均匀沉淀法制备纳米二氧化工艺条件研究[J]. 无机盐工业, 2001, 33(2): 3-5.
    [21] 江欣, 秦晓宇, 宫孟娣, 等. 金属镍掺杂改进纳米TiO2的表面增强拉曼散射性能[J]. 高等学校化学学报, 2014, 35(3): 488-492.
    [22] Wen B M, Liu C Y, Liu Y. Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires[J]. New journal of chemistry, 2005, 29(7): 969-971.
    [23] Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids (Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758.
    [24] Jia M K, Su G J, Zheng M H, et al. Development of self-assembled 3D FexOy micro/nano materials for application in hexachlorobenzene degradation[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(3): 2100-2106.
    [25] Tsoncheva T, Ivanova L, Minchev C, et al. Cobalt-modified mesoporous MgO, ZrO2, and CeO2 oxides as catalysts for methanol decomposition[J]. Journal of Colloid and Interface Science, 2009, 333(1): 277-284.
    [26] 刘莎. 纳米铈基氧化物对氯代芳烃和NOx的协同降解研究[D].陕西:西安建筑科技大学硕士学位论文,2014.
    [27] Huang H, Dai Q, Wang X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158: 96-105.
    [28] Ma X D, Zheng M H, Liu W B, et al. Dechlorination of hexachlorobenzene using ultrafine Ca-Fe composite oxides[J]. Journal of Hazardous Materials, 2005, 127(1): 156-162.
    [29] Simagina V, Likholobov V, Bergeret G, et al. Catalytic hydrodechlorination of hexachlorobenzene on carbon supported Pd-Ni bimetallic catalysts[J]. Applied Catalysis B: Environmental, 2003, 40(4): 293-304.
    [30] Choudhry G G, Hutzinger O. Acetone-sensitized and non-sensitized photolyses of tetra-, penta- and hexachlorobenzenes in acetonitrile-water mixtures: photoisomerization and formation of several products including polychlorobiphenyls[J]. Environmental Science & Technology, 1984, 18(4): 235-241.
    [31] Yamada S, Naito Y, Takada M, et al. Photodegradation of hexachlorobenzene and theoretical prediction of its degradation pathways using quantum chemical calculation[J]. Chemosphere, 2008, 70(4): 731-736.
    [32] Lin S J, Su G J, Zheng M H, et al. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1,2,4-trichlorobenzene[J]. Applied Catalysis B: Environmental, 2012, 123: 440-447.
    [33] Wu W, Xu J, Ohnishi R. Complete hydrodechlorination of chlorobenzene and its derivatives over supported nickel catalysts under liquid phase conditions[J]. Applied Catalysis B: Environmental, 2005, 60(1): 129-137.
  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览数:  1133
  • PDF下载数:  346
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-07-28
  • 刊出日期:  2015-12-15
李宾克, 任广军, 芦会杰, 黄林艳, 李倩倩, 黄鑫辰, 赵彦辉, 丁秀华, 苏贵金. 不同形貌的TiO2材料对五氯苯的热降解[J]. 环境化学, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802
引用本文: 李宾克, 任广军, 芦会杰, 黄林艳, 李倩倩, 黄鑫辰, 赵彦辉, 丁秀华, 苏贵金. 不同形貌的TiO2材料对五氯苯的热降解[J]. 环境化学, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802
LI Binke, REN Guangjun, LU Huijie, HUANG Linyan, LI Qianqian, HUANG Xinchen, ZHAO Yanhui, DING Xiuhua, SU Guijin. Thermal degradation of pentachlorobenzene by titania catalysts with different morphologies[J]. Environmental Chemistry, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802
Citation: LI Binke, REN Guangjun, LU Huijie, HUANG Linyan, LI Qianqian, HUANG Xinchen, ZHAO Yanhui, DING Xiuhua, SU Guijin. Thermal degradation of pentachlorobenzene by titania catalysts with different morphologies[J]. Environmental Chemistry, 2015, 34(12): 2213-2222. doi: 10.7524/j.issn.0254-6108.2015.12.2015072802

不同形貌的TiO2材料对五氯苯的热降解

  • 1.  沈阳理工大学 环境与化学工程学院, 沈阳, 110159;
  • 2.  中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

国家973计划(2015CB453103)

国家自然科学基金(21377147, 21177141, 21321004)资助.

摘要: 采用溶剂热法、均匀共沉淀法和溶胶-水热法分别制备出3种不同形貌的二氧化钛催化剂. 采用X射线衍射仪(XRD)、X射线能谱仪(EDX)和场发射扫描电子显微镜(SEM)对催化剂的晶型结构和微观形貌进行分析. 以五氯苯为模型污染物,分别在300 ℃、350 ℃、400 ℃条件下对3种不同形貌材料的催化活性进行评价. 结果表明,3种材料的活性强弱顺序为:均匀共沉淀法所制TiO2 > 溶胶-水热法所制TiO2 > 溶剂热法所制TiO2. 均匀共沉淀法所制TiO2在反应温度350 ℃、反应时间60 min的条件下对五氯苯的降解效率已经达到99.8%. 通过GC-MS对五氯苯的降解产物进行分析,检测到有四氯苯、三氯苯和二氯苯等生成,表明降解反应有加氢脱氯过程发生. 五氯苯加氢脱氯降解路径为:PeCB→1,2,4,5/1,2,3,5/1,2,3,4-TeCB→1,2,4/1,2,3-TrCB→DCB.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回