超声强化铋掺杂氧化铟降解偶氮染料废水
Ultrasonic enhanced degradation of AZO dye wastewater by bismuth doped indium oxide
-
摘要: 本实验利用溶剂热法合成了铋掺杂氧化铟催化剂,利用XRD、EDS和SEM对催化剂的结构和形貌进行了表征.研究表明,铋离子已经掺杂进氧化铟的晶格中.掺杂后的催化剂粒径为纳米级,且具有良好的球形形貌.本文以偶氮染料直接大红废水为目标降解物,分别考察了不同催化剂对该染料废水的降解性能以及铋掺杂氧化铟催化剂的投加量、染料的浓度、溶液的pH、超声频率和超声功率对该染料的降解性能.在本实验条件下,催化剂投加量为7.5 mg、染料浓度为10 mg·L-1、pH值为6、超声频率为45 kHz、功率为100 W时,对染料废水的去除效果最优,总去除率可达83.7%,比空白实验的去除率提高将近5倍.Abstract: In this study, a novel catalyst, bismuth doped indium oxide, was synthesized via a solvothermal method, and its structure and morphology were characterized by XRD, EDS and SEM. The results indicate that bismuth ions were well doped into the lattice of indium oxide, and the particle size of catalyst with good spherical shape was on the nanoscale. In the experiment, Congo red was applied to validate the degradation property of different catalysts. The effects of the operating parameters, such as the dosage of bismuth doped indium oxide, initial dye concentration, pH value, medium ultrasonic frequency and ultrasonic power on the degradation were evaluated. Under the experimental condition, the removal rate was up to 83.71% with the optimum parameters, i.e. a catalyst dosage of 7.5 mg, an initial concentration of 10 mg·L-1, an ultrasonic frequency of 45 kHz and an ultrasonic power of 100 W in just 60 minutes. The total removal rate increased nearly five times than the blank experiment.
-
Key words:
- ultrasound /
- doping /
- indium oxide /
- AZO dye wastewater /
- Congo red
-
-
[1] WONG Y C, SZETO Y S, CHEUNG W H, et al. Effect of temperature, particle size and percentage deacetylation on the adsorption of acid dyes on chitosan[J]. Absorption, 2008, 1(14):11-20. [2] 周露,陈君红,于飞,等. 芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能[J]. 环境化学, 2012, 31(5):669-676. ZHOU L,CHEN J H,YUN F,et al. Adsorption of methylene blue on magnetic multiwalled carbon nanotube synthesized by Fenton reaction[J].Environmental Chemistry,2012,31(5):669-676(in Chinese).
[3] 马杰,虞琳琳,金路,等.改性碳纳米管原始样品吸附亚甲基蓝的性能研究[J]. 环境化学, 2012, 31(5):646-652. MA J,YU L L,JIN L, et al. Adsorbtion of methylene blue on the modified as-prepared carbon nanotubes[J]. Environmental Chemistry, 2012, 31(5):646-652(in Chinese).
[4] ZHANG Z H, LIAO Z P, ZHANG G H. Degradation performance of a Keggin type Zn-Mo-Zr catalyst for acidic green B with ultrasonic waves[J]. RSC Advances, 2015, 5:63104-63110. [5] WANG X, WANG L G, LI J B, et al. Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation[J]. Separation and Purification Technology, 2014, 122:41-46. [6] WANG X K, WEI Y C, WANG C, et al.Ultrasonic degradation of reactive brilliant red K-2BP in water with CCl4 enhancement:Performance optimization and degradation mechanism[J]. Separation and Purification Technology, 2011, 81:69-76. [7] LI J, GUO S Y, LI X N. Degradation kinetics of polystyrene and EPDM melts under ultrasonic irradiation[J]. Polymer Degradation and Stability, 2005, 89:6-14. [8] WU M M,WANG C,ZHAO Y, et al. Hydrothermal synthesis of porous rh-In2O3 nanostructures with visible-light-driven photocatalytic degradation of tetracycline[J].CrystEngComm, 2015,17:2336-2345. [9] 马丽.氧化铟和氧化铟/聚合物复合材料的制备与表征[D]. 济南, 山东轻化工学院.2012, 21-22. MA L. Preparation and characterizations of indium oxides and indium oxide/polymer composites[D].Jinan, Shandong Polytechnic University.2012, 21 -22(in Chinese).
[10] 杨红晓. 溶剂热法合成氧化铟、氧化铈纳米结构及其性能研究[D]. 济南, 山东大学. 2013, 60-74. YANG H X. Solvothermal Synthesis of In2O3 [11] 程欣. 超声强化二氧化钛催化降解染料废水中甲基橙效果的研究[J]. 陕西教育学院学报, 2008, 24(3):73-75. CHEN X. Ultrasonic degradation of MO was studied with TiO2 as catalyst[J]. Journal of Shaanxi Instutute of Education. 2008, 24(3):73-75(in Chinese).
[12] 张朝红,马腾,姜岳峰,等. 纳米金红石型TiO2催化超声降解亚甲基蓝溶液[J].化学研究与应用, 2006, 18(5):579-581. ZHANG Z H, MA T, JIANG Y F, et al. Study on ultrasonic degradation ofmethylene blue in the presence of nanometer rutile TiO2 catalyst[J]. Chemical Research and Application, 2006, 18(5):579-581(in Chinese).
[13] 姚勇,陈高峰,刘昌伟,等.水热法制备PbMoO4微晶体及其光催化降解灭幼脲[J].环境化学, 2012, 31(5):641-645. YAO Y, CHEN G F, LIU C W, et al. Photocatalytic degradation of chlorbenzuron over PbMoO4 microcrystals[J].Environmental Chemistry, 2012, 31(5):641-645(in Chinese).
[14] 陈伟,范瑾初. 超声降解水体中有机污染物的效果及影响因素[J]. 给水排水, 2000, 26(15):19-21. CHEN W, FAN J C. The effect of ultrasonic degradation of organic pollutants in water and its influencing factors[J]. Water & Wastewater Engineering, 2000, 26(15):19-21(in Chinese).
[15] FRANCONY A, PETRIER C. Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies:20 kHz and 500 kHz[J]. Ultrasonic Sonochemistry, 1996, 3:77-82. [16] HUA INEZ, HOFFMANN M R. Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environmental Science & Technology, 1997, 31:2237-2243. [17] 龚小娟. 水体中TiO2纳米颗粒的分散稳定性与常规工艺去除效果研究[D]. 哈尔滨,哈尔滨工业大学. 2013:28-29. GONG X J. The dispersion stability of TiO2 nanoparticles in water and removal effect by conventional process[D]. Harbin, Harbin Institute of Technology. 2013 , 28-29(in Chinese).
[18] WANG J, PAN Z J, ZHANG Z H.The investigation on ultrasonic degradation of acid fuchsine in the presence of ordinary and nanometer rutile TiO2 and the comparison of their sonocatalytic activities[J].Dyes and Pigments, 2007, 74:525-530. -

计量
- 文章访问数: 1380
- HTML全文浏览数: 1321
- PDF下载数: 470
- 施引文献: 0