响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水

赵颖, 王亚旻, 卫皇曌, 于杨, 孙承林. 响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水[J]. 环境化学, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801
引用本文: 赵颖, 王亚旻, 卫皇曌, 于杨, 孙承林. 响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水[J]. 环境化学, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801
ZHAO Ying, WANG Yamin, WEI Huangzhao, YU Yang, SUN Chenglin. Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxidation using response surface methodology[J]. Environmental Chemistry, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801
Citation: ZHAO Ying, WANG Yamin, WEI Huangzhao, YU Yang, SUN Chenglin. Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxidation using response surface methodology[J]. Environmental Chemistry, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801

响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水

Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxidation using response surface methodology

  • 摘要: 以污水处理厂剩余污泥为原料制备硝酸改性活性炭,用于催化湿式过氧化氢氧化(CWPO)处理间甲酚模拟废水,以实现剩余污泥的资源化利用.使用物理吸附、程序升温脱附(TPD)、X射线荧光光谱(XRF)等表征方法对污泥炭的物理化学性质进行测定.而后采用响应面法(RSM)优化污泥炭CWPO降解间甲酚的反应条件,选取反应温度、反应时间、初始pH值、过氧化氢(H2O2)投加量及催化剂投加量为影响因子,总有机碳(TOC)去除率为响应值,应用中心组合设计(CCD)建立响应值与各影响因子之间关系的二次多项式数学模型,采用后退回归法进行模型精简,并通过方差分析对模型进行可信程度检验.优化结果表明,在反应温度为60℃,反应时间为120 min,初始pH=3.00,H2O2投加量为2.03 g·L-1,催化剂投加量为0.78 g·L-1的条件下,可达到最佳效果,此时预测模型的TOC去除率为44.6%,间甲酚转化率为100%.通过模型验证实验得到的TOC去除率为46.6%,仅与理论值相差2.0%,在95%的置信区间内,说明该模型具有可靠性.最后采用GC-MS对污泥炭CWPO降解间甲酚中间产物进行分析.
  • 加载中
  • [1] JIANG Y, CAI X, WU D, et al. Biodegradation of phenol and m-cresol by mutated Candida tropicalis[J]. Journal of Environmental Sciences, 2010, 22(4):621-626.
    [2] ZAZO J A, BEDIA J, FIERRO C M, et al. Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors[J]. Catalysis Today, 2012, 187(1):115-121.
    [3] 刘琰,孙德智,李磊.常温常压下催化湿式过氧化氢氧化工艺的研究[J]. 化工环保,2006,26(2):83-86.

    LIU Y, SUN DZ, LI L,et al. Study on catalytic wet hydrogen peroxide oxidation process under room temperature and atmospheric pressure[J]. Environmental Protection of Chemical Industry, 2006, 26(2):83-86(in Chinese).

    [4] NAVALON S, ALVARO M, GARCIA H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):1-26.
    [5] DHAOUADI A,ADHOUM N. Heterogeneous catalytic wet peroxide oxidation of paraquat in the presence of modified activated carbon[J]. Applied Catalysis B:Environmental, 2010, 97(1/2):227-235.
    [6] MUNOZ M, DE PEDRO Z M, CASAS J A, et al. Improved wet peroxide oxidation strategies for the treatment of chlorophenols[J]. Chemical Engineering Journal, 2013, 228:646-654.
    [7] MUNOZ M, DE PEDRO Z M, MENENDEZ N, et al. A ferromagnetic gamma-alumina-supported iron catalyst for CWPO. Application to chlorophenols[J]. Appl Catal B-Environ, 2013, 136:218-224.
    [8] DI LUCA C, IVORRA F, MASSA P, et al. Alumina supported fenton-like systems for the catalytic wet peroxide oxidation of phenol solutions[J]. Ind Eng Chem Res, 2012, 51(26):8979-8984.
    [9] WANG X, ZHU N, YIN B. Preparation of sludge-based activated carbon and its application in dye wastewater treatment[J]. Journal of hazardous materials, 2008, 153(1/2):22-27.
    [10] LI W H, YUE Q Y, GAO B Y, et al. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions[J]. Chemical Engineering Journal, 2011, 171(1):320-327.
    [11] KHATAEE A R, ZAREI M, MORADKHANNEJHAD L. Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode[J]. Desalination,2010,258(1/3):112-119.
    [12] DAVARNEJAD R, MOHAMMADI M, ISMALI A F. Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes:Statistical comparison[J]. Journal of Water Process Engineering, 2014, 3:18-25.
    [13] TRAWCZYNSKI J, SUPPAN S, SAYAG C, et al. Surface acidity of the activated CBC[J]. Fuel Processing Technology, 2002, 77-78:317-324.
    [14] BAS D, BOYACIH. Modeling and optimization I:Usability of response surface methodology[J]. Journal of Food Engineering, 2007, 78(3):836-845.
    [15] WU D F,LI Y D, SHI Y H,et al. Effects of the calcination conditions on the mechanical properties of a PCoMo-Al2O3 hydrotreating catalyst[J]. Chemical Engineering Science, 2002, 57(17):3495-3504.
    [16] BEG Q K,SAHAI V,GUPTA R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor[J]. Process Biochemistry, 2003, 39(2):203-209.
    [17] ARALAN-ALATON I, AKIN A, OLMEZ-HANCI T. An optimization and modeling approach for H2O2/UV-C oxidation of a commercial non-ionic textile surfactant using central composite design[J]. Journal of Chemical Technology & Biotechnology, 2010, 85:493-501.
    [18] ANA R, FARALDOS M, ANA B. Role of the activated carbon surface on catalytic wet peroxide oxidation[J]. Industrial and Engineering Chemistry Research, 2008, 47:8166-8174.
    [19] GORGULHO F, MESQUITA J, GONCALVES F, et al. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption[J]. Carbon, 2008, 46(12):1544-1555.
    [20] MORENO-CASTILLA C, CARRASCO-MARIN F, MALDONADO-HODARY F J, et al. Effects of non oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content[J]. Carbon, 1998, 36:145-151.
    [21] DOMINGUEZ C M, OCON P, QUINTANILLA A, et al. Highly efficient application of activated carbon as catalyst for wet peroxide oxidation[J]. Applied Catalysis B:Environmental, 2013, 140-141:663-670.
    [22] 董俊明,曾光明,杨朝晖.催化湿式过氧化氢氧化法的研究[J]. 环境科学动态,2004,(3):29-31. DONG J M, ZENG G M, YANG Z H. Research of catalytic wet hydrogen peroxide oxidation method[J]. Environmental Science Trends, 2004

    , (3):29-31(in Chinese).

    [23] MARTINEZ F, PARIENTE I, BREBON C, et al. Chemical surface modified-activated carbon cloth for catalytic wet peroxide oxidation of phenol[J].Chem Technol Biotechnol, 2014, 89(8):1182-1188.
    [24] BOSSMANN S H, OLIVEROS E, GOB S, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions[J]. Journal of Physical Chemistry A, 1998, 102(28):5542-5550.
    [25] LIU P J, HE S B, WEI H Z, et al. Characterization of α-Fe2O3/γ-Al2O3catalysts for catalytic wet peroxide oxidation of m-cresol[J]. Ind Eng Chem Res, 2015, 54(1):130-136.
  • 加载中
计量
  • 文章访问数:  1072
  • HTML全文浏览数:  996
  • PDF下载数:  592
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-10-08
  • 刊出日期:  2016-03-15
赵颖, 王亚旻, 卫皇曌, 于杨, 孙承林. 响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水[J]. 环境化学, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801
引用本文: 赵颖, 王亚旻, 卫皇曌, 于杨, 孙承林. 响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水[J]. 环境化学, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801
ZHAO Ying, WANG Yamin, WEI Huangzhao, YU Yang, SUN Chenglin. Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxidation using response surface methodology[J]. Environmental Chemistry, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801
Citation: ZHAO Ying, WANG Yamin, WEI Huangzhao, YU Yang, SUN Chenglin. Optimization of m-cresol degradation by sludge-derived carbon in catalytic wet peroxide oxidation using response surface methodology[J]. Environmental Chemistry, 2016, 35(3): 516-525. doi: 10.7524/j.issn.0254-6108.2016.03.2015100801

响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水

  • 1.  中国科学院大连化学物理研究所, 大连, 116023;
  • 2.  中国科学院大学, 北京, 100049

摘要: 以污水处理厂剩余污泥为原料制备硝酸改性活性炭,用于催化湿式过氧化氢氧化(CWPO)处理间甲酚模拟废水,以实现剩余污泥的资源化利用.使用物理吸附、程序升温脱附(TPD)、X射线荧光光谱(XRF)等表征方法对污泥炭的物理化学性质进行测定.而后采用响应面法(RSM)优化污泥炭CWPO降解间甲酚的反应条件,选取反应温度、反应时间、初始pH值、过氧化氢(H2O2)投加量及催化剂投加量为影响因子,总有机碳(TOC)去除率为响应值,应用中心组合设计(CCD)建立响应值与各影响因子之间关系的二次多项式数学模型,采用后退回归法进行模型精简,并通过方差分析对模型进行可信程度检验.优化结果表明,在反应温度为60℃,反应时间为120 min,初始pH=3.00,H2O2投加量为2.03 g·L-1,催化剂投加量为0.78 g·L-1的条件下,可达到最佳效果,此时预测模型的TOC去除率为44.6%,间甲酚转化率为100%.通过模型验证实验得到的TOC去除率为46.6%,仅与理论值相差2.0%,在95%的置信区间内,说明该模型具有可靠性.最后采用GC-MS对污泥炭CWPO降解间甲酚中间产物进行分析.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回