径流雨水中不同分子量溶解性有机物分布及其与Cu2+相互作用
Molecular weight distribution of dissolved organic matters in stormwater runoff and their interactions with Cu2+
-
摘要: 为了解径流雨水中溶解性有机物的分子量分布及其与重金属离子的相互作用,采集北京南三环一处典型住宅区的径流雨水样品,采用超滤技术对样品中的DOM进行分子量分级,并采用紫外-可见吸收光谱与三维荧光光谱对不同分子量区间的DOM进行表征.选取径流雨水中含量较高的Cu2+作为重金属离子代表,与不同分子量区间的DOM进行滴定实验,运用荧光猝灭模型拟合与Cu2+络合物的条件稳定常数(KM)及结合容量(CL).实验结果表明,小于1 kDa的有机物所占比例最高,其DOC占雨水样品DOC含量的41%;各分子量DOM的化学组成无明显区别,主要为紫外类腐殖质;分子量为1—3 kDa的DOM其芳香性有机碳或含共轭不饱和双键有机物所占比例相对较高,而3—5 kDa的DOM分子其芳环上一些含氧官能团(如羰基、羟基、羧基、酯类)的取代程度较高;此外,比较不同分子量区间DOM的与Cu2+络合物的条件稳定常数及结合容量,可知1—3 kDa区间的有机物条件稳定常数值最大,3—5 kDa的DOM组分拥有更大的结合容量.实验结果表明,低分子量的有机物(2+结合.Abstract: In order to investigate the molecular weight distribution of dissolved organic matters in stormwater runoff and their interactions with heavy metals, the stormwater runoff samples were collected from a typical residential area close to the southern 3rd ring road of Beijing. The molecular weight distribution of DOM was classified by ultrafiltration membrane separation, and the UV-visible spectrometry and excitation-emission matrix fluorescence were empleyed to carry out the chemical characterization on the DOM of different molecular weight. Finally, Cu2+ was selected as the representative of heavy metals to perform the titration experiment with various molecular weight DOM, and the model of fluorescence quenching was used to fit the values of conditional stability constants (KM) and complex capacities (CL). The results revealed that the fraction of molecular weight less than 1 kDa possessed the highest ratio in accounting for about 41% of the total DOC. UV humic-like compounds were the major fluorescent components of all fractions. However, the fraction of 1—3 kDa contained more aromatic carbon and conjugated unsaturated double bonds, and the molecular substituent degree of some oxygenated functional groups (e.g., carbonyl, hydroxyl, carboxyl and ester) of 3—5 kDa's fraction was higher than the others. In addition, compared with the values of KM and CL of all fractions, the results suggested KM of 1—3 kDa's fraction and CL of 1—3 kDa's fraction were the largest. The results implied that low molecular weight organics (2+.
-
Key words:
- stormwater runoff /
- dissolved organic matter /
- molecular weight distribution /
- Cu2+ /
- Beijing
-
-
[1] 李俊奇, 车伍. 城市雨水问题与可持续发展对策[J]. 城市环境与城市生态, 2005, 18(4): 5-8. LI J Q, CHE W. Rainwater problems and countermeasures for sustainable development in cities[J]. Urban Environment & Urban Ecology, 2005, 18(4): 5-8 (in Chinese).
[2] ZHAO C, WANG C C, LI J Q, et al. Dissolved organic matter in urban stormwater runoff at three typical regions in Beijing: Chemical composition, structural characterization and sources identification[J]. RSC Advances, 2015, 90(5): 73490-73500. [3] ZHAO C, WANG C C, LI J Q, et al. Chemical characteristics of chromophoric dissolved organic matter in stormwater runoff of a typical residential area, Beijing[J]. Desalination and Water Treatment, 2015, DOI: 10.1080/19443994.2015.1106345. [4] SANTOS P S, SANTOS E B, DUARTE A C. First spectroscopic study on the structural features of dissolved organic matter isolated from rainwater in different seasons[J]. Science of the Total Environment, 2012, 426: 172-179. [5] 赵晓丽, 毕二平. 水溶性有机质对土壤吸附有机污染物的影响[J]. 环境化学, 2014, 33(2): 256-261. ZHAO X L, BI E P. Effects of dissolved organic matter on the sorption of organic pollutants to soils[J]. Environmental Chemistry, 2014, 33(2): 256-261 (in Chinese).
[6] 蔡文良, 许晓毅, 罗固源, 等. 长江重庆段溶解性有机物的荧光特性分析[J]. 环境化学, 2012, 31(7): 1003-1008. CAI W L, XU X Y, LUO G Y, et al. Fluorescence characteristics of dissolved organic matter in the Chongqing section of Yangtze River[J]. Environmental Chemistry, 2012, 31(7): 1003-1008 (in Chinese).
[7] GUO X, JIANG J, XI B, et al. Study on the spectral and Cu (Ⅱ) binding characteristics of DOM leached from soils and lake sediments in the Hetao region[J]. Evironmental Science and Pollution Research, 2012, 19(6): 2079-2087. [8] BAI Y, WU F, LIU C, et al. Ultraviolet absorbance titration for determining stability constants of humic substances with Cu (Ⅱ) and Hg (Ⅱ)[J]. Analytica Chimica Acta, 2008, 616(1): 115-121. [9] CHAMINDA G, NAKAJIMA F, FURUMAI H, et al. Comparison of metal (Zn and Cu) complexation characteristics of DOM in urban runoff, domestic wastewater and secondary effluent[J]. Water Science & Technology, 2010, 62(9): 2044-2050. [10] MCELMURRY S P, LONG D T, VOICE T C. Stormwater dissolved organic matter: Influence of land cover and environmental factors[J]. Environmental Science & Technology, 2013, 48(1): 45-53. [11] NASON J A, SPRICK M S, BLOOMQUIST D J. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange–Adsorptive cathodic stripping voltammetry[J]. Water Research, 2012, 46(17): 5788-5798. [12] KIIKKIL O, KITUNEN V, SMOLANDER A. Chemical and biological characterization of dissolved organic matter derived from Norway spruce litter divided into fractions according to molecular size[J]. European Journal of Soil Biology, 2012, 50: 109-111. [13] GUNDERSEN P, STEINNES E. Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers[J]. Water Research, 2003, 37(2): 307-318. [14] 杨毅, 杨霞霞, 马新培, 等. pH对城市污水二级出水中溶解性有机物的荷电、聚集与光谱特性的影响[J]. 环境化学, 2015, 34(10): 1804-1808. YANG Y, YANG X X, MA X P, et al. Effect of pH on the charge aggregation and spectral characteristics of DOM in secondary effluent of municipal wastewater[J]. Environmental Chemistry, 2015, 34(10): 1804-1808 (in Chinese).
[15] WEI Q, WANG D, WEI Q, et al. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China[J]. Environmental Mmonitoring and Assessment, 2008, 141(1): 347-357. [16] TUCCILLO M E. Size fractionation of metals in runoff from residential and highway storm sewers[J]. Science of the Total Environment, 2006, 355(1): 288-300. [17] 李璐璐, 江韬, 闫金龙, 等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征[J]. 环境科学, 2014, 35(3): 933-941. LI L L, JIANG T, YAN J L, et al. Ultraviolet-visible (UV-Vis) spectral characteristics of dissolved organic matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir areas[J]. Environmental Science, 2014, 35(3): 933-941 (in Chinese).
[18] 魏群山, 罗专溪, 陈强, 等. 天然水体溶解性有机物(DOM)分级组分对典型城市源污染的荧光响应[J]. 环境科学研究, 2010, 23(10): 1229-1235. WEI Q S, LUO Z X, CHEN Q, et al. Florescence responses of dissolved organic matter (DOM) fractions to typical urban source pollution in natural water[J]. Research of Environmental Sciences, 2010, 23(10): 1229-1235 (in Chinese).
[19] GILBERT J K, CLAUSEN J C. Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut[J]. Water Research, 2006, 40(4): 826-832. [20] BROWN J N, PEAKE B M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff[J]. Science of the Total Environment, 2006, 359(1): 145-155. [21] HAO X. A megacity held hostage: Beijing's conflict between water and economy[J]. Water21, 2012, 6: 39-42. [22] KIEBER R J, WHITEHEAD R F, REID S N, et al. Chromophoric dissolved organic matter (CDOM) in rainwater, southeastern north Carolina, USA[J]. Journal of Atmospheric Chemistry, 2006, 54(1): 21-41. [23] HE P J, ZHENG Z, ZHANG H, et al. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition[J]. Science of the Total Environment, 2009, 407(17): 4928-4933. [24] RYAN D K, WEBER J H. Copper (Ⅱ) complexing capacities of natural waters by fluorescence quenching[J]. Environmental Science & Technology, 1982, 16(12): 866-872. [25] PLAZA C, BRUNETTI G, SENESI N, et al. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy[J]. Environmental Science & Technology, 2006, 40(3): 917-923. [26] SALVE P R, LOHKARE H, GOBRE T, et al. Characterization of chromophoric dissolved organic matter (CDOM) in rainwater using fluorescence spectrophotometry[J]. Bulletin of Eenvironmental Contamination and Toxicology, 2012, 88(2): 215-218. [27] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. [28] NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): A critical review[J]. Analytical and bioanalytical chemistry, 2013, 405(1): 109-124. [29] 曾宪成, 成绍鑫. 腐植酸的主要类别[J]. 腐植酸, 2002, 2(4): 4-6. ZENG X C, CHENG S X. The major types of humic acid[J]. Humic Acid, 2002, 2(4): 4-6 (in Chinese).
[30] SANTOS P S, OTERO M, DUARTE R M, et al. Spectroscopic characterization of dissolved organic matter isolated from rainwater[J]. Chemosphere, 2009, 74(8): 1053-1061. [31] PEURAVUORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2): 133-149. [32] 田林锋, 胡继伟, 李存雄, 等. 通过DOM的光谱特性对长江源头典型高原深水湖泊进行评价[J]. 中国工程科学, 2010, 12(6): 80-84. TIAN L F, HU J W, LI C X, et al. Evaluation of a typical plateau deep lake by DOM spectral characteristics[J]. Engineering Sciences, 2010, 12(6): 80-84 (in Chinese).
[33] FUENTES M, GONZ LEZ-GAITANO G, GARC A-MINA J M. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J]. Organic Geochemistry, 2006, 37(12): 1949-1959. [34] 王齐磊, 江韬, 赵铮, 等. 三峡库区典型农业小流域土壤溶解性有机质的紫外-可见及荧光特征[J]. 环境科学, 2015, 36(3): 879-887. WANG Q L, JIANG T, ZHAO Z, et al. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of soil dissolved organic matter (DOM) in typical agricultural watershed of Three Gorges Reservoir region[J], Environmental Science, 2015, 36(3): 879-887 (in Chinese).
[35] LI X, HE X S, GUO X J, et al. Changes in Spectral Characteristics and Copper (Ⅱ)-binding of dissolved organic matter in leachate from different water-treatment processes[J]. Archives of Environmental Contamination and Toxicology, 2014, 66(2): 270-276. [36] COBLE P G, DEL CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep-Sea Research Part II, 1998, 45(10-11): 2195-2223. [37] KRONBERG L, KESKITALO J, ELORANTA P. Content of humic substances in freshwater[J]. Limnology of Humic Waters, 1999, 2: 9-10. [38] COBLE P G, GREEN S A, BLOUGH N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature, 1990, 348 (6300): 432-435. [39] TOMING K, TUVIKENE L, VILBASTE S, et al. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment[J]. Limnology and Oceanography: Methods, 2013, 58(4): 1259-1270. [40] SEITZINGER S P, STYLES R M, LAUCK R, et al. Atmospheric pressure mass spectrometry: A new analytical chemical characterization method for dissolved organic matter in rainwater[J]. Environmental Science & Technology, 2003, 37(1): 131-137. [41] DE ZARRUK K K, SCHOLER G, DUDAL Y. Fluorescence fingerprints and Cu2+-complexing ability of individual molecular size fractions in soil-and waste-borne DOM[J]. Chemosphere, 2007, 69(4): 540-548. [42] THURMAN E M, WERSHAW R, MALCOLM R, et al. Molecular size of aquatic humic substances[J]. Organic Geochemistry, 1982, 4(1): 27-35. [43] CHEN W, HABIBUL N, LIU X Y, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environmental Science & Technology, 2015, 49(4): 2052-2058. [44] XU H, YU G, YANG L, et al. Combination of two-dimensional correlation spectroscopy and parallel factor analysis to characterize the binding of heavy metals with DOM in lake sediments[J]. Journal of Hazardous Materials, 2013, 263: 412-421. -

计量
- 文章访问数: 1136
- HTML全文浏览数: 1030
- PDF下载数: 782
- 施引文献: 0