基于Mn:ZnS量子点-Cu2+体系室温磷光猝灭-恢复方法测定水体中焦磷酸根离子

李玉美, 卢运贤, 班睿, 罗迎春, 杜海军. 基于Mn:ZnS量子点-Cu2+体系室温磷光猝灭-恢复方法测定水体中焦磷酸根离子[J]. 环境化学, 2016, 35(5): 941-947. doi: 10.7524/j.issn.0254-6108.2016.05.2015111003
引用本文: 李玉美, 卢运贤, 班睿, 罗迎春, 杜海军. 基于Mn:ZnS量子点-Cu2+体系室温磷光猝灭-恢复方法测定水体中焦磷酸根离子[J]. 环境化学, 2016, 35(5): 941-947. doi: 10.7524/j.issn.0254-6108.2016.05.2015111003
LI Yumei, LU Yunxian, BAN Rui, LUO Yingchun, DU Haijun. An “off-on” room-temperature phosphorescence probe based on Mn:ZnS quantum dots/Cu2+ complex for determination of pyrophosphate in water[J]. Environmental Chemistry, 2016, 35(5): 941-947. doi: 10.7524/j.issn.0254-6108.2016.05.2015111003
Citation: LI Yumei, LU Yunxian, BAN Rui, LUO Yingchun, DU Haijun. An “off-on” room-temperature phosphorescence probe based on Mn:ZnS quantum dots/Cu2+ complex for determination of pyrophosphate in water[J]. Environmental Chemistry, 2016, 35(5): 941-947. doi: 10.7524/j.issn.0254-6108.2016.05.2015111003

基于Mn:ZnS量子点-Cu2+体系室温磷光猝灭-恢复方法测定水体中焦磷酸根离子

  • 基金项目:

    国家自然科学基金(21565010),国家民委科研项目(14GZZ003),国家级大学生创新创业训练项目(201510672004),贵州省科学技术基金([2012]2187),贵州省科学技术厅-贵州民族大学科技联合基金(LKM[2011]13)资助.

An “off-on” room-temperature phosphorescence probe based on Mn:ZnS quantum dots/Cu2+ complex for determination of pyrophosphate in water

  • Fund Project: Supported by the National Natural Science Foundation of China (21565010), Research Projects of the State Ethnic Affairs Commission of china (14GZZ003), the National Undergraduate Innovation and Entrepreneurship Training Programs (201510672004), the Science and Technology Foundation of Guizhou Province ([2012]2187), Guizhou Provincial Department of Science and Technology-Guizhou Minzu University Joint Fund (LKM[2011]13).
  • 摘要: 以谷胱甘肽(GSH)为稳定剂,成功合成了高性能的水溶性Mn:ZnS量子点(Quantum dots,QDs).Mn:ZnS QDs表面的羧基能与Cu2+结合从而有效引发QDs电子转移,致使Mn:ZnS QDs室温磷光显著猝灭.当体系中加入焦磷酸(PPi)时,由于Cu2+与PPi的结合能力强于Mn:ZnS QDs表面的羧基,Mn:ZnS QDs磷光强度又逐渐恢复.据此建立一种基于Mn:ZnS QDs-Cu2+体系的室温磷光探针测定焦磷酸根离子的新方法.该方法灵敏、简单,线性范围为5.0×10-8-1.0×10-4 mol·L-1,检测限为1.0×10-8 mol·L-1.经过干扰实验及添加回收率实验证实,该方法具有良好的选择性,满足于实际样品水体中焦磷酸的检测分析.
  • 加载中
  • [1] LEE S,YUEN K K Y,JOLLIFFE K A,et al. Fluorescent and colorimetric chemosensors for pyrophosphate[J]. Chem Soc Rev,2015,44(7): 1749-1762.
    [2] XU K,CHEN Z,ZHOU L,et al. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry[J]. Anal Chem,2014,87(1): 816-820.
    [3] 徐勤超,金灿,朱雪慧,等. 基于有机小分子的焦磷酸根荧光探针研究进展[J]. 有机化学,2014,34(4): 647-661.

    XU Q C,JIN C,ZHU X H,et al. Recent progress in fluorescent probes for pyrophosphate based on small organic molecules[J]. Chin J Org Chem,2014,34(4): 647-661(in Chinese).

    [4] 张静,孙向英,杨传孝,等. 可再生的开关型荧光自组装膜的构建及其对磷酸根的痕量检测[J]. 环境化学,2013,32(12): 2385-2389.

    ZHANG J,SUN X Y,YANG C X,et al. Fabrication of regenerable fluorescent self-assembled film and detection of trace phosphate ion[J]. Environmental Chemistry,2013,32(12): 2385-2389(in Chinese).

    [5] 李满秀,邸会霞,张媛,等. 基于CdTe量子点荧光猝灭-恢复方法测定磷酸根[J]. 化学研究与应用,2015,27(3): 335-338.

    LI M X,DI H X, ZHANG Y,et al. Phosphate detection based on CdTe quantum-dot-based OFF-ON fluorescent probe[J]. Chemical Research and Application,2015,27(3): 335-338(in Chinese).

    [6] HAN M,GAO X,SU J Z,et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotech,2001,19(7): 631-635.
    [7] DERFUS A M,CHAN W C W,BHATIA S N. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano Lett,2003,4(1): 11-18.
    [8] WU P,YAN X P. Doped quantum dots for chemo/biosensing and bioimaging[J]. Chem Soc Rev,2013,42(12): 5489-5521.
    [9] WONG J K F,YIP S P,LEE T M H. Ultrasensitive and closed-tube colorimetric loop-mediated isothermal amplification assay using carboxyl-modified gold nanoparticles[J]. Small,2014,10(8): 1495-1499.
    [10] CHENG C,HUANG Y,WANG J,et al. Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin[J]. Anal Chem,2013,85(5): 2601-2605.
    [11] BAI J M,ZHANG L,LIANG R P,et al. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing[J]. Chem-Eur J,2013,19(12): 3822-3826.
    [12] NORRIS D J,EFROS A L,ERWIN S C. Doped nanocrystals[J]. Science,2008,319(5871): 1776-1779.
    [13] HE Y,WANG H F,YAN X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence petection of enoxacin in biological fluids[J]. Anal Chem,2008,80(10): 3832-3837.
    [14] WU P,HE Y,WANG H F,et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids[J]. Anal Chem,2010,82(4): 1427-1433.
    [15] WANG H F,HE Y,JI T R,et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water[J]. Anal Chem,2009,81(4): 1615-1621.
    [16] ZOU W S,SHENG D,GE X,et al. Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots[J]. Anal Chem,2010,83(1): 30-37.
    [17] BAN R,ZHU J J,ZHANG J. Manganese-doped ZnS quantum dots as a phosphorescent probe for use in the bi-enzymatic determination of organophosphorus pesticides[J]. Microchim Acta,2014,181(13-14): 1591-1599.
    [18] BAN R,LI J,CAO J,et al. Highly luminescent glutathione-capped ZnS:Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface[J]. Analytical Methods,2013,5(21): 5929-5937.
    [19] ZHUANG J,ZHANG X,WANG G,et al. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer[J]. J Mater Chem,2003,13(7): 1853-1857.
    [20] MURASE N,JAGANNATHAN R,KANEMATSU Y,et al. Fluorescence and EPR characteristics of Mn2+-doped ZnS nanocrystals prepared by aqueous colloidal method[J]. J Phys Chem B,1999,103(5): 754-760.
    [21] SAPRA S,PRAKASH A,GHANGREKAR A,et al. Emission properties of manganese-doped ZnS nanocrystals[J]. J Phys Chem B,2005,109(5): 1663-1668.
    [22] CHEN W,AGUEKIAN V F,VASSILIEV N,et al. New observations on the luminescence decay lifetime of Mn2+ in ZnS:Mn2+ nanoparticles[J]. J Chem Phys,2005,123(12): 124707.
    [23] KIM S,EOM M S,SEO S H,et al. Highly sensitive gold nanoparticle-based colorimetric probe for phytate detection with high selectivity over various phosphate derivatives[J]. Tetrahedron Lett,2013,54(39): 5284-5287.
    [24] KIM I B,HAN M H,PHILLIPS R L,et al. Nano-conjugate fluorescence probe for the discrimination of phosphate and pyrophosphate[J]. Chem-Eur J,2009,15(2): 449-456.
    [25] SUN J F,REN C L,LIU L H,et al. CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution[J]. Chin Chem Lett,2008,19(7): 855-859.
    [26] DIAO X L,XIA Y S,ZHANG T L,et al. Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes[J]. Anal Bioanal Chem,2007,388(5): 1191-1197.
  • 加载中
计量
  • 文章访问数:  893
  • HTML全文浏览数:  765
  • PDF下载数:  467
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-10
  • 刊出日期:  2016-05-15

基于Mn:ZnS量子点-Cu2+体系室温磷光猝灭-恢复方法测定水体中焦磷酸根离子

  • 1. 贵州民族大学化学与环境科学学院, 贵阳, 550025
基金项目:

国家自然科学基金(21565010),国家民委科研项目(14GZZ003),国家级大学生创新创业训练项目(201510672004),贵州省科学技术基金([2012]2187),贵州省科学技术厅-贵州民族大学科技联合基金(LKM[2011]13)资助.

摘要: 以谷胱甘肽(GSH)为稳定剂,成功合成了高性能的水溶性Mn:ZnS量子点(Quantum dots,QDs).Mn:ZnS QDs表面的羧基能与Cu2+结合从而有效引发QDs电子转移,致使Mn:ZnS QDs室温磷光显著猝灭.当体系中加入焦磷酸(PPi)时,由于Cu2+与PPi的结合能力强于Mn:ZnS QDs表面的羧基,Mn:ZnS QDs磷光强度又逐渐恢复.据此建立一种基于Mn:ZnS QDs-Cu2+体系的室温磷光探针测定焦磷酸根离子的新方法.该方法灵敏、简单,线性范围为5.0×10-8-1.0×10-4 mol·L-1,检测限为1.0×10-8 mol·L-1.经过干扰实验及添加回收率实验证实,该方法具有良好的选择性,满足于实际样品水体中焦磷酸的检测分析.

English Abstract

参考文献 (26)

目录

/

返回文章
返回