基于Mn:ZnS量子点-Cu2+体系室温磷光猝灭-恢复方法测定水体中焦磷酸根离子
An “off-on” room-temperature phosphorescence probe based on Mn:ZnS quantum dots/Cu2+ complex for determination of pyrophosphate in water
-
摘要: 以谷胱甘肽(GSH)为稳定剂,成功合成了高性能的水溶性Mn:ZnS量子点(Quantum dots,QDs).Mn:ZnS QDs表面的羧基能与Cu2+结合从而有效引发QDs电子转移,致使Mn:ZnS QDs室温磷光显著猝灭.当体系中加入焦磷酸(PPi)时,由于Cu2+与PPi的结合能力强于Mn:ZnS QDs表面的羧基,Mn:ZnS QDs磷光强度又逐渐恢复.据此建立一种基于Mn:ZnS QDs-Cu2+体系的室温磷光探针测定焦磷酸根离子的新方法.该方法灵敏、简单,线性范围为5.0×10-8-1.0×10-4 mol·L-1,检测限为1.0×10-8 mol·L-1.经过干扰实验及添加回收率实验证实,该方法具有良好的选择性,满足于实际样品水体中焦磷酸的检测分析.Abstract: Water-soluble Mn:ZnS quantum dots (QDs) were synthesized with glutathione (GSH) as a stabilizer. Cu2+ coordinated with the carboxyl group of GSH on the surface of Mn:ZnS QDs and blocked the charge transfer of Mn:ZnS QDs, which resulted in apparent room-temperature phosphorescence (RTP) quenching. Because the chelation ability of Cu2+ with pyrophosphate (PPi) was stronger than with carboxyl groups, the RTP intensity of Mn:ZnS QD gradually recovered when PPi was introduced to the Mn:ZnS Quantum Dots/Cu2+ system. Thus a novel "off-on" room-temperature phosphorescence probe for the determination of PPi was developed based on Mn:ZnS Quantum Dots/Cu2+ system. A linear range 5.0×10-8 to 1.0×10-4 mol·L-1 for PPi was obtained with a limit of detection (LOD) of 1.0×10-8 mol·L-1. The present novel assay was very simple and sensitive. Our results reveal that the proposed RTP probe can be applied for the determination of PPi in real water samples.
-
Key words:
- Mn:ZnS quantum dots /
- room-temperature phosphorescence /
- pyrophosphate /
- determination
-
[1] LEE S,YUEN K K Y,JOLLIFFE K A,et al. Fluorescent and colorimetric chemosensors for pyrophosphate[J]. Chem Soc Rev,2015,44(7): 1749-1762. [2] XU K,CHEN Z,ZHOU L,et al. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry[J]. Anal Chem,2014,87(1): 816-820. [3] 徐勤超,金灿,朱雪慧,等. 基于有机小分子的焦磷酸根荧光探针研究进展[J]. 有机化学,2014,34(4): 647-661. XU Q C,JIN C,ZHU X H,et al. Recent progress in fluorescent probes for pyrophosphate based on small organic molecules[J]. Chin J Org Chem,2014,34(4): 647-661(in Chinese).
[4] 张静,孙向英,杨传孝,等. 可再生的开关型荧光自组装膜的构建及其对磷酸根的痕量检测[J]. 环境化学,2013,32(12): 2385-2389. ZHANG J,SUN X Y,YANG C X,et al. Fabrication of regenerable fluorescent self-assembled film and detection of trace phosphate ion[J]. Environmental Chemistry,2013,32(12): 2385-2389(in Chinese).
[5] 李满秀,邸会霞,张媛,等. 基于CdTe量子点荧光猝灭-恢复方法测定磷酸根[J]. 化学研究与应用,2015,27(3): 335-338. LI M X,DI H X, ZHANG Y,et al. Phosphate detection based on CdTe quantum-dot-based OFF-ON fluorescent probe[J]. Chemical Research and Application,2015,27(3): 335-338(in Chinese).
[6] HAN M,GAO X,SU J Z,et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotech,2001,19(7): 631-635. [7] DERFUS A M,CHAN W C W,BHATIA S N. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano Lett,2003,4(1): 11-18. [8] WU P,YAN X P. Doped quantum dots for chemo/biosensing and bioimaging[J]. Chem Soc Rev,2013,42(12): 5489-5521. [9] WONG J K F,YIP S P,LEE T M H. Ultrasensitive and closed-tube colorimetric loop-mediated isothermal amplification assay using carboxyl-modified gold nanoparticles[J]. Small,2014,10(8): 1495-1499. [10] CHENG C,HUANG Y,WANG J,et al. Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin[J]. Anal Chem,2013,85(5): 2601-2605. [11] BAI J M,ZHANG L,LIANG R P,et al. Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing[J]. Chem-Eur J,2013,19(12): 3822-3826. [12] NORRIS D J,EFROS A L,ERWIN S C. Doped nanocrystals[J]. Science,2008,319(5871): 1776-1779. [13] HE Y,WANG H F,YAN X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence petection of enoxacin in biological fluids[J]. Anal Chem,2008,80(10): 3832-3837. [14] WU P,HE Y,WANG H F,et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids[J]. Anal Chem,2010,82(4): 1427-1433. [15] WANG H F,HE Y,JI T R,et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water[J]. Anal Chem,2009,81(4): 1615-1621. [16] ZOU W S,SHENG D,GE X,et al. Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots[J]. Anal Chem,2010,83(1): 30-37. [17] BAN R,ZHU J J,ZHANG J. Manganese-doped ZnS quantum dots as a phosphorescent probe for use in the bi-enzymatic determination of organophosphorus pesticides[J]. Microchim Acta,2014,181(13-14): 1591-1599. [18] BAN R,LI J,CAO J,et al. Highly luminescent glutathione-capped ZnS:Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface[J]. Analytical Methods,2013,5(21): 5929-5937. [19] ZHUANG J,ZHANG X,WANG G,et al. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer[J]. J Mater Chem,2003,13(7): 1853-1857. [20] MURASE N,JAGANNATHAN R,KANEMATSU Y,et al. Fluorescence and EPR characteristics of Mn2+-doped ZnS nanocrystals prepared by aqueous colloidal method[J]. J Phys Chem B,1999,103(5): 754-760. [21] SAPRA S,PRAKASH A,GHANGREKAR A,et al. Emission properties of manganese-doped ZnS nanocrystals[J]. J Phys Chem B,2005,109(5): 1663-1668. [22] CHEN W,AGUEKIAN V F,VASSILIEV N,et al. New observations on the luminescence decay lifetime of Mn2+ in ZnS:Mn2+ nanoparticles[J]. J Chem Phys,2005,123(12): 124707. [23] KIM S,EOM M S,SEO S H,et al. Highly sensitive gold nanoparticle-based colorimetric probe for phytate detection with high selectivity over various phosphate derivatives[J]. Tetrahedron Lett,2013,54(39): 5284-5287. [24] KIM I B,HAN M H,PHILLIPS R L,et al. Nano-conjugate fluorescence probe for the discrimination of phosphate and pyrophosphate[J]. Chem-Eur J,2009,15(2): 449-456. [25] SUN J F,REN C L,LIU L H,et al. CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution[J]. Chin Chem Lett,2008,19(7): 855-859. [26] DIAO X L,XIA Y S,ZHANG T L,et al. Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes[J]. Anal Bioanal Chem,2007,388(5): 1191-1197.
计量
- 文章访问数: 893
- HTML全文浏览数: 765
- PDF下载数: 467
- 施引文献: 0