中空硅球表面分子印迹温敏聚合物吸附溶液中的四环素

欧红香, 陈群汇, 朱晓莉, 邢志祥, 马建锋, 潘建明. 中空硅球表面分子印迹温敏聚合物吸附溶液中的四环素[J]. 环境化学, 2016, 35(5): 901-909. doi: 10.7524/j.issn.0254-6108.2016.05.2015112306
引用本文: 欧红香, 陈群汇, 朱晓莉, 邢志祥, 马建锋, 潘建明. 中空硅球表面分子印迹温敏聚合物吸附溶液中的四环素[J]. 环境化学, 2016, 35(5): 901-909. doi: 10.7524/j.issn.0254-6108.2016.05.2015112306
OU Hongxiang, CHEN Qunhui, ZHU Xiaoli, XING Zhixiang, MA Jianfeng, PAN Jianming. Hollow silica sphere surface molecularly imprinted temperature-sensitive polymers for adsorption of Tetracycline in solution[J]. Environmental Chemistry, 2016, 35(5): 901-909. doi: 10.7524/j.issn.0254-6108.2016.05.2015112306
Citation: OU Hongxiang, CHEN Qunhui, ZHU Xiaoli, XING Zhixiang, MA Jianfeng, PAN Jianming. Hollow silica sphere surface molecularly imprinted temperature-sensitive polymers for adsorption of Tetracycline in solution[J]. Environmental Chemistry, 2016, 35(5): 901-909. doi: 10.7524/j.issn.0254-6108.2016.05.2015112306

中空硅球表面分子印迹温敏聚合物吸附溶液中的四环素

  • 基金项目:

    国家自然科学基金(21306013、51276024、51574046),江苏省博士后基金(1501024A),江苏省高等学校大学生创新创业训练计划项目(201510292021Z)资助.

Hollow silica sphere surface molecularly imprinted temperature-sensitive polymers for adsorption of Tetracycline in solution

  • Fund Project: Supported by the National Natural Science Foundation of China (21306013、51276024、51574046), Jiangsu Province Postdoctoral Fund (1501024A) and College Students' Innovation and Entrepreneurship Training Program of Jiangsu Province (201510292021Z).
  • 摘要: 本文开展了中空温敏分子印迹聚合物(HTMIPs)吸附溶液中四环素(TC)的实验研究,采用牺牲酵母模板法制备的中空硅球作为基质材料,以TC为模板分子,N-异丙基丙烯酰胺为温敏单体,通过沉淀聚合法合成了中空温敏型TC分子的印迹聚合物,利用FT-IR和SEM等方法对HTMIPs的理化性能进行表征,通过静态吸附实验考察HTMIPs对TC的吸附性能.结果表明,HTMIPs对模板分子TC在pH值为5.0时,35℃条件下吸附容量最大,约为72.05 μmol·g-1,表明该印迹吸附剂对TC具有良好的亲和性和选择吸附性.HTMIPs的等温吸附结果与Freundlich模型拟合更好,动力学吸附结果更符合准二级动力学吸附模型,表明HTMIPs对于TC分子的吸附主要是在非均匀表面共价键作用下的结果.同时,HTMIPs表现出良好的可重复利用性,5次重复吸附-解吸附后吸附量损失约6.64%.因此,所制备的中空温敏印迹聚合物在吸附分离环境水体中的抗生素方面有良好的实际应用前景.
  • 加载中
  • [1] DAI J D,WEI X,CAO Z J,et al. Highly-controllable imprinted polymer nanoshell at the surface of magnetic halloysite nanotubes for selective recognition and rapid adsorption of tetracycline[J]. RSC Advances,2014,4: 7967-7978.
    [2] GAN T,SHI Z X,SUN J Y,et al. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinccations-exchanged mon-tmorillonite catalyst[J]. Talanta,2014,121: 187-193.
    [3] ZHAO Y,WANG Y L. Measurement and correlation of solubility of tetracycline hydrochloride in six organic solvents[J]. Journal of Chemical Thermodynamics,2013,57: 9-13.
    [4] SUÁREZ B,SANTOS B,SIMONET B M,et al. Solid-phase extraction-capillary electrophoresis-mass spectrometry for the determination of tetracyclines residues in surface water by using carbon nanotubes as sorbent material[J]. Journal of Chromatography A,2007,1175(1): 127-132.
    [5] CHICO J,MECA S,COMPANYÓ R,et al. Restricted access materials for sample clean-up in the analysis of trace levels of tetracyclines by liquid chromatography: Application to food and environmental analysis[J]. Journal of Chromatography A,2008,1181(1-2): 1-8.
    [6] JARA C C,FINO D,SPECCHIA V,et al. Electrochemical removal of antibiotics from wastewater[J]. Applied Catalysis B: Environmental,2007,70(1-4): 479-487.
    [7] MEHRJOUEI M,MVLLER S,MÖLLER D. Removal of fuel oxygenates from water using advanced oxidation technologies by means of falling film reactor[J]. Chemical Engineering Journal,2012,211-212: 353-359.
    [8] DOLAR D,KOŠUTIC K,PERIŠA M,et al. Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes[J]. Separation and Purification Technology,2013,115: 1-8.
    [9] SONG Y J,OU H X,BIAN W B,et al. Ion-Imprinted polymers based on hollow silica with yeasts as sacrificial supports for Sr2+ selective adsorption[J]. Journal of Inorganic and Organometallic Polymers and Materials,2013,23: 1325-1334.
    [10] XU L C,PAN J M,DAI J D,et al. Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution[J]. Journal of Hazardous Materials,2012,233-234: 48-56.
    [11] YOSHIMATSU K,REIMHULT K,KROZER A,et al. Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications[J]. Analytica Chimica Acta,2007,584(1): 112-121.
    [12] BAI B,GUAN W S,LI Z Y,et al. Bio-template route for facile fabrication of Cd(OH)2@yeast hybrid microspheres and their subsequent conversion to mesoporous CdO hollow microspheres[J]. Materials Research Bulletin,2011,46(1): 26-31.
    [13] MORITZ M,LANIECKI M. SBA-15 mesoporous material modified with APTES asthe carrier for 2-(3-benzoylphenyl) propionic acid[J]. Applied Surface Science,2012,258(19): 7523-7529.
    [14] ZHANG X Z,ZHUO R X. Dynamic properties of temperature-sensitive poly(Nisopropylacrylamide) gel cross-linked through siloxane linkage[J]. Langmuir,2001,17(1): 12-16.
    [15] WU T,GE Z S,LIU S Y. Fabrication of thermoresponsive cross-linked poly(Nisopropylacrylamide) nanocapsules and silver nanoparticles-embedded hybrid capsules with controlled shell thickness[J]. Chemistry Materials,2011,23(9): 2370-2380.
    [16] MENG M J,MENG X G,LI Y,et al. An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(Ⅲ) from aqueous solution[J]. Journal of Hazardous Materials,2014,278: 134-143.
    [17] RAHCHAMANI J,MOUSAVI H Z,BEHZAD M. Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies[J]. Desalination,2011,267(2-3): 256-260.
    [18] CHEN L G,ZHANG X P,Sun L,et al. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer[J]. Journal of Agriculture and Food Chemistry,2009,57(21): 10073-10080.
    [19] ZHAN Y C,LUO X B,NIE S S,et al. Selective separation of Cu(Ⅱ) from aqueous solution with a novel Cu(Ⅱ) surface magnetic ion-imprinted polymer[J]. Industrial & Engineering Chemistry Research,2011,50(10): 6355-6361.
    [20] RAOOV M,MOHAMAD S,ABAS M R,et al. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization,adsorption isotherm,kinetic study,thermodynamics[J]. Journal of Hazardous Materials,2013,263: 501-516.
    [21] AN F Q,GAO B J. Adsorption characteristics of Cr(Ⅲ) ionic imprinting polyamine on silica gel surface[J]. Desalination,2009,249(3): 1390-1396.
    [22] OU H X,CHEN Q H,PAN J M,et al. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion[J]. Journal of Hazardous Materials,2015,289: 28-37.
    [23] GU X H,XU R,YUAN G L,et al. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine[J]. Analytica Chimica Acta,2010,675(1): 64-67.
  • 加载中
计量
  • 文章访问数:  738
  • HTML全文浏览数:  649
  • PDF下载数:  523
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-23
  • 刊出日期:  2016-05-15

中空硅球表面分子印迹温敏聚合物吸附溶液中的四环素

  • 1.  常州大学环境与安全工程学院, 常州, 213164;
  • 2.  江苏大学化学化工学院, 镇江, 212013
基金项目:

国家自然科学基金(21306013、51276024、51574046),江苏省博士后基金(1501024A),江苏省高等学校大学生创新创业训练计划项目(201510292021Z)资助.

摘要: 本文开展了中空温敏分子印迹聚合物(HTMIPs)吸附溶液中四环素(TC)的实验研究,采用牺牲酵母模板法制备的中空硅球作为基质材料,以TC为模板分子,N-异丙基丙烯酰胺为温敏单体,通过沉淀聚合法合成了中空温敏型TC分子的印迹聚合物,利用FT-IR和SEM等方法对HTMIPs的理化性能进行表征,通过静态吸附实验考察HTMIPs对TC的吸附性能.结果表明,HTMIPs对模板分子TC在pH值为5.0时,35℃条件下吸附容量最大,约为72.05 μmol·g-1,表明该印迹吸附剂对TC具有良好的亲和性和选择吸附性.HTMIPs的等温吸附结果与Freundlich模型拟合更好,动力学吸附结果更符合准二级动力学吸附模型,表明HTMIPs对于TC分子的吸附主要是在非均匀表面共价键作用下的结果.同时,HTMIPs表现出良好的可重复利用性,5次重复吸附-解吸附后吸附量损失约6.64%.因此,所制备的中空温敏印迹聚合物在吸附分离环境水体中的抗生素方面有良好的实际应用前景.

English Abstract

参考文献 (23)

目录

/

返回文章
返回