光电Fenton耦合转盘技术处理四环素废水

张岩, 高明明, 王新华, 王曙光, 刘瑞婷. 光电Fenton耦合转盘技术处理四环素废水[J]. 环境化学, 2016, 35(5): 893-900. doi: 10.7524/j.issn.0254-6108.2016.05.2015120106
引用本文: 张岩, 高明明, 王新华, 王曙光, 刘瑞婷. 光电Fenton耦合转盘技术处理四环素废水[J]. 环境化学, 2016, 35(5): 893-900. doi: 10.7524/j.issn.0254-6108.2016.05.2015120106
ZHANG Yan, GAO Mingming, WANG Xinhua, WANG Shuguang, LIU Ruiting. Photo-electro-Fenton degradation of tetracycline based on rotating disk electrode[J]. Environmental Chemistry, 2016, 35(5): 893-900. doi: 10.7524/j.issn.0254-6108.2016.05.2015120106
Citation: ZHANG Yan, GAO Mingming, WANG Xinhua, WANG Shuguang, LIU Ruiting. Photo-electro-Fenton degradation of tetracycline based on rotating disk electrode[J]. Environmental Chemistry, 2016, 35(5): 893-900. doi: 10.7524/j.issn.0254-6108.2016.05.2015120106

光电Fenton耦合转盘技术处理四环素废水

  • 基金项目:

    国家自然科学基金(21007033)资助.

Photo-electro-Fenton degradation of tetracycline based on rotating disk electrode

  • Fund Project: Supported by the National Natural Science Foundation of China(21007033).
  • 摘要: 本实验中,我们开发了一种耦合紫外光催化和转盘技术的电Fenton反应器用于降解含有四环素的有机废水.在该反应器中,O2首先在旋转的石墨阴极表面发生还原反应生成H2O2,随后H2O2被催化分解成活性自由基来降解矿化有机物.实验中了考察了pH,阴极电压,转速等实验条件对系统生成H2O2能力的影响.结果表明,在pH=3,阴极电压-0.8 V vs. SCE,转速为400 r·min-1条件下,经过75 min反应H2O2的积累浓度有最大值(51.5 mg·L-1).实验证明该系统对四环素有较好的降解和矿化效果.以1.0 mmol·L-1的Fe2+作为催化剂,紫外/电Fenton耦合转盘系统可以在45 min内将初始浓度50 mg·L-1四环素降解94.2%且90 min时TOC的去除率为68.2%.紫外/电Fenton处理效果明显优于电Fenton系统.进一步实验分析发现,紫外线的引入可以通过两种途径来提升电Fenton的处理效果.一方面紫外光可以促进Fe3+还原成Fe2+,加速体系铁离子循环,从而提升电Fenton的处理效果;另一方面还可以通过直接激发H2O2分解成活性自由基加速降解四环素.
  • 加载中
  • [1] YAHIAOUI I, AISSANI-BENISSAD F, FOURCADE F, et al. Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture[J]. Chemical Engineering Journal, 2013,221: 418-425.
    [2] ZHOU M, YU Q, LI. L, et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system[J]. Separation and Purification Technology, 2007, 57: 380-387.
    [3] SIRÉS I, OTURAN N, OTURAN M A, et al. Electro-Fenton degradation of antimicrobials triclosan and triclocarban[J]. Electrochimica Acta, 2007, 52(17): 5493-5503.
    [4] PETRUCCI E, MONTANARO D, LE DONNE S. Effect of carbon material on the performance of a gas diffusion electrode in electro-Fenton process[J]. Journal of Environmental Management, 2009, 19: 299-305.
    [5] GUPTA G, LAU C, RAJENDRAN V, et al. Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes[J]. Electrochemistry Communications, 2011, 13(3): 247-249.
    [6] XU Y, HE Y, JIA J,et al. Cu-TiO2/Ti dual rotating disk photocatalytic (PC) reactor: Dual electrode degradation facilitated by spontaneous electron transfer[J]. Environmental Science & Technology, 2009, 43(16): 6289-6294.
    [7] YU F K, ZHOU M H, ZHOU L, et al. A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation[J]. Environmental Science & Technology Letters, 2014, 1(7): 320-324.
    [8] 李英柳,邬红娟,李爱莲.转盘式反应器光催化氧化含酚废水的试验研究[J]. 工业水处理, 2006,26(10): 33-35.

    LI Y L, WU H J, LI A L, Experimental study on photocatalytic oxidation of phenol by turnplate reactor[J]. Industrial water treatment, 2006,26(10): 33-35(in Chinese).

    [9] RUALES-LONFAT C, BARONA J.F, SIENKIEWICZ A, et al. Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH[J]. Applied Catalysis B: Environmental, 2005, 165: 497-508.
    [10] SOARES P.A, BATALHA M, SOUZA S.M, et al. Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater[J].Journal of Environmental Management, 2015, 152: 120-131.
    [11] MOREIRA F C, BOAVENTURA R A R, BRILLAS E, et al. Degradation of trimethoprim antibiotic by UVA photoelectro-Fenton process mediated by Fe(Ⅲ)-carboxylate complexes[J]. Applied Catalysis B: Environmental, 2015, 162: 34-44.
    [12] SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (Ⅳ) oxalate[J]. Analyst, 1980, 180(1255): 950-954.
    [13] CHU Y Y, QIAN Y, WANG W J, et al. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation[J]. Journal of Hazardous Materials, 2012, 199-200: 179-185.
    [14] QIANG Z, CHANG J H, HUANG C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]. Water Research, 2002, 36: 85-94.
    [15] LOAIZA-AMBULUDI S, PANIZZA M, OTURAN N, et al. Electro-Fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium[J]. Journal of Electroanalytical Chemistry, 2013, 702: 31-36.
    [16] MOREIRA F C, GARCIA-SEGURA S, BOAVENTURA R A R, et al. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode[J]. Applied Catalysis B: Environmental, 2014, 160-161: 492-505.
    [17] GARCIA-SEGURA S, SALAZAR R, BRILLAS E. Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: Influence of Fe3+ and Cu2+ catalysts and identification of oxidation products[J]. Electrochimica Acta, 2013, 113: 609-619.
    [18] 冯杜,郭迎庆,李华杰,等. UV-H2O2降解羟苯甲酮反应动力学及影响因素[J].环境科学, 2015, 36: 2129-2136. FENG D, GUO Y Q, LI Y H, et al. Degradation of Organic Sunscreens 2

    -hydroxy-4-methoxybenzophenone by UV/H2O2 Process:Kinetics and Factors[J]. Environmental Science, 2015, 36: 2129-2136(in Chinese).

    [19] CAI C, ZHANG H, ZHONG X, et al. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of OrangeⅡin water[J]. Water Research, 2014, 66: 473-485.
  • 加载中
计量
  • 文章访问数:  984
  • HTML全文浏览数:  923
  • PDF下载数:  481
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-01
  • 刊出日期:  2016-05-15

光电Fenton耦合转盘技术处理四环素废水

  • 1. 山东大学环境科学与工程学院, 济南, 250100
基金项目:

国家自然科学基金(21007033)资助.

摘要: 本实验中,我们开发了一种耦合紫外光催化和转盘技术的电Fenton反应器用于降解含有四环素的有机废水.在该反应器中,O2首先在旋转的石墨阴极表面发生还原反应生成H2O2,随后H2O2被催化分解成活性自由基来降解矿化有机物.实验中了考察了pH,阴极电压,转速等实验条件对系统生成H2O2能力的影响.结果表明,在pH=3,阴极电压-0.8 V vs. SCE,转速为400 r·min-1条件下,经过75 min反应H2O2的积累浓度有最大值(51.5 mg·L-1).实验证明该系统对四环素有较好的降解和矿化效果.以1.0 mmol·L-1的Fe2+作为催化剂,紫外/电Fenton耦合转盘系统可以在45 min内将初始浓度50 mg·L-1四环素降解94.2%且90 min时TOC的去除率为68.2%.紫外/电Fenton处理效果明显优于电Fenton系统.进一步实验分析发现,紫外线的引入可以通过两种途径来提升电Fenton的处理效果.一方面紫外光可以促进Fe3+还原成Fe2+,加速体系铁离子循环,从而提升电Fenton的处理效果;另一方面还可以通过直接激发H2O2分解成活性自由基加速降解四环素.

English Abstract

参考文献 (19)

目录

/

返回文章
返回