基于水热法制备的TiO2/MoS2复合光催化剂及其光催化制氢活性
Development of TiO2/MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light
-
摘要: 采用水热法制备出了TiO2/MoS2复合光催化剂,通过X射线衍射(XRD)、透射电镜(TEM)、紫外可见漫反射光谱(DRS)、X射线光电子能谱分析(XPS)和光致发光光谱(PL)方法对TiO2/MoS2 进行表征.研究了MoS2负载量、复合催化剂TiO2/MoS2表面担载的贵金属种类(Pt、Pd、Ru)及其担载量、空穴牺牲剂种类对光催化反应制氢活性的影响,并考察了催化剂的稳定性.研究结果表明,硫化钼和二氧化钛复合能显著提高光催化产氢性能,硫化钼的最佳负载量为5 wt%,比产氢速率为776.99 μmol·h-1·g-1,其产氢活性是纯TiO2的4.92倍,商业P25 的3.67倍;复合催化剂TiO2/5 wt% MoS2表面担载的贵金属种类及其质量分数对产氢性能有一定的影响,其中0.5 wt%的Pd对产氢性能的影响最大,能明显提高复合催化剂的产氢性能,比产氢速率可提高至2599 μmol·h-1·g-1;该催化剂可利用不同有机物作为牺牲剂产氢,如甲醇、乙醇和乳酸,三者产氢量的次序为:甲醇>乳酸>乙醇;经过5次循环实验,复合催化剂Pd/(TiO2/MoS2)仍能保持90%的活性. 另外,对复合催化剂光催化产氢机理也进行了分析.Abstract: TiO2/MoS2 composite was synthesized by a hydrothermal method. The samples were characterized by X-ray diffraction, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy, XPS and photoluminescence spectroscopy. the photocatalytic activity of TiO2/MoS2 composite was evaluated by varying the MoS2 content, types of noble mental deposition (such as Pt, Pd, Ru), and types of sacrificial agents. The stability of the catalyst was also investigated. The results suggested that the appropriate content of MoS2 in TiO2/MoS2 is 5 wt% and the corresponding specific H2 production rate was 776.99 μmol·h-1·g-1, which was 4.92 times and 3.67 times that of TiO2 and commercial P25 respectively. By loading 0.5 wt% Pd on the TiO2/5 wt% MoS2, the highest specific hydrogen production rate of 2599 μmol·h-1·g-1 was achieved in 25 vol% methanol solution. The composite catalyst Pd/(TiO2/MoS2) could produce hydrogen with different electron donors such as methanol, ethanol and lactic acid, and the hydrogen production rate follows the order of methanol > lactic acid > ethanol. After 5 cycles of stability test, the hydrogen production rate of Pd/(TiO2/MoS2) preserved 90%. In addition, the mechanism of composite catalyst was also proposed.
-
Key words:
- hydrothermal method /
- photocatalysis /
- molybdenum sulfide /
- hydrogen production
-
-
[1] MAO S S,CHEN X B. Selected nanotechnologies for renewable energy applications[J]. International Journal of Energy Research,2007,31: 619-636 [2] CHEN X,BURDA C. The electronic origin of the visible-light absorption properties of C-,N- and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society,2008,130: 5018-5019. [3] 魏丽芳,郑先君,魏永杰.铂掺杂二氧化钛的制备及光催化乳酸制氢的研究[J].环境化学,2011,30(5): 989-993. WEI L F,ZHENG X J,WEI Y J,et al.Preparation of platinum doped titanium dixoxide and its photocatalytic hydrogen production from lactic acid[J]. Environmental Chemistry,2011,30(5):989-993(in Chinese).
[4] DANAE V,IOSIFINA G,VASSILIOS B,et al. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2[J]. Applied Catalysis B: Environmental,2015,178: 54-64. [5] SUN T,FAN J,LIU E,et al. Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation[J]. Powder Technology,2012,228: 210-218. [6] 王丹军,郭莉,李东升,等.N、S共掺TiO2光催化剂的合成及其在废水处理中的应用[J].环境化学,2010,29(5): 842-847. WANG D J,GUO L,LI D S,et al. N,S-codoped TiO2 photocatalyst: Synthesis & its application in the treament of waste water[J]. Environmental Chemistry,2010,29(5): 842-847(in Chinese).
[7] BOUHADOUN S,GUILLARD C,DAPOZZE F,et al. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: Application in photocatalysis[J]. Applied Catalysis B: Environmental,2015,174-175: 367-375. [8] 徐亚鹏,赵文喜,冯鸣凤,等. P掺杂TiO2纳米管的制备及其对光催化甘油水溶液制氢性能的影响[J].环境化学,2014,33(1): 129-134. XU Y P,ZHAO W X,FENG M F,et al. Preparation of P-doped TiO2 nanotubes and their photocatalytic performance for H2 production from glycerol solution[J]. Environmental Chemistry,2014,33(1): 129-134(in Chinese).
[9] 艾翠玲,郭锐敏,邵享文.CdS-TiO2复合光催化剂可见光下降解黄连素[J].环境化学,2013,32(3): 366-373. AI C L,GUO R M,SHAO X W. Visible light induced photocatalytic degradation of the antibiotic berberine with CdS-TiO2 in suspension[J]. Environmental Chemistry,2013,32(3): 366-373(in Chinese).
[10] ZANG Y,LI L,XU Y,et al. Hybridization of brookite TiO2 with g-C3N4: A visible-light-driven photocatalyst for As3+oxidation,MO degradation and water splitting for hydrogen evolution[J]. Journal of Materials Chemistry A,2014,2: 15774-15780. [11] 曹静,罗邦德,林海莉,等.AgI/TiO2催化剂的焙烧处理及其可见光催化活性[J].环境化学,2011,30(5): 983-987. CAO J,LUO B D,LIN H L,et al.Calcination and visble-light photocatalytic activity of AgI/TiO2 catalyst[J]. Environmental Chemistry,2011,30(5): 983-987(in Chinese).
[12] LI Y,WANG H,PENG S. Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and cds for synergic photocatalytic hydrogen generation[J]. The Journal of Physical Chemistry C,2014,118: 19842-19848. [13] WANG Q,YUN G,Bai Y,et al. Photodegradation of rhodamine B with MoS2/Bi2O2CO3 composites under UV light irradiation[J]. Applied Surface Science,2014,313:537-544. [14] ZONG X,YAN H,WU G,et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J]. Journal of the American Chemical Society,2008,130:7176-7177. [15] POURABBAS B,JAMSHIDI B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol[J]. Chemical Engineering Journal,2008,138: 55-62 [16] TACCHINI I T,TERRADO E,ANSÓN A,et.al. Preparation of a TiO2-MoS2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV ligh[J]. Micro & Nano Letters,2011,11(6): 932-936 [17] HU K H,Hu X G,XU Y F,et.al. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange[J]. Journal of Materials Science,2010,45:2640-2648 [18] XIANG Q,YU J,JARONIEC M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J]. Journal of the American Chemical Society,2012,134:6575-6578. [19] GE L,HAN C,XIAO X,et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-C3N4 with enhanced hydrogen evolution activity[J]. Interntional Journal of Hydrogen energy,2013,38: 6960-6969 [20] CHANG K,CHEN W,MA L,et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry,2011,21:6251. [21] LIU S,YU J,JARONIEC M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets[J]. Journal of the American Chemical Society,2010,132: 11914-11916. [22] 田野,何俣,尚静,等.水热法合成MoS2层状材料及其结构表征[J].化学学报,2004,62(18):1807-1810. TIAN Y,HE Y,SHANG J,et al. Hydrothermal synthesis and characterization of laminar MoS2[J]. Acta Chimica Sinica,2004,62(18): 1807-1810(in Chinese).
[23] LIU H,LV T,ZHU C,et al. Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity[J]. Journal of Molecular Catalysis A: Chemical,2015,396:136-142 [24] HOU Y,WEN Z,CUI S,et al.Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity[J]. Advanced Materials,2013,25(43): 6291-6297 [25] 张金龙,安保正一.贵金属负载光催化剂在丙炔光催化水解反应中的研究(Ⅲ)[J].高等学校化学学报,2004,4:733-736. ZHANG J L,MASAKAZU A. A study of loaded photocatalysts with precious metal on the photocatalytic hydrolysis reaction of propyne(Ⅲ)[J]. Chemical Journal of Chinese Universities,2004 ,4: 733-736(in Chinese).
[26] GE L,ZUO F,LIU J K,et.al. Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots[J].The Journal of Physcial Chemistry C,2012,116: 13708-13714. -

计量
- 文章访问数: 1092
- HTML全文浏览数: 946
- PDF下载数: 1472
- 施引文献: 0