Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能

李凯, 魏停, 高政纲, 高善民. Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能[J]. 环境化学, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004
引用本文: 李凯, 魏停, 高政纲, 高善民. Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能[J]. 环境化学, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004
LI Kai, WEI Ting, GAO Zhenggang, GAO Shanmin. Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites[J]. Environmental Chemistry, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004
Citation: LI Kai, WEI Ting, GAO Zhenggang, GAO Shanmin. Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites[J]. Environmental Chemistry, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004

Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能

  • 基金项目:

    山东省自然科学基金重点基金(ZR2013EM001),山东省科技发展计划(2014GSF117015)资助.

Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites

  • Fund Project: Supported by the Key Project of Natural Science Foundation of Shandong Province(ZR2013EM001), Science and Technology Development Plan Project of Shandong Province (2014GSF117015).
  • 摘要: 以低温退火制得的TiO2纳米管和三聚氰胺为原料,经过一步煅烧制备Ti3+自掺杂TiO2纳米管/g-C3N4复合材料.采用热重分析(TGA)、X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的热稳定性、组成、结晶性、形貌、化学价态和光学性能等进行了表征.结果表明,将H2Ti3O7预处理后再与三聚氰胺混合热处理,产物是Ti3+自掺杂TiO2纳米管/g-C3N4复合材料,而未经预处理的H2Ti3O7与三聚氰胺混合后热处理得到的是Ti3+自掺杂TiO2纳米颗粒/g-C3N4复合材料.罗丹明B((RhB)水溶液为模拟废水,以300 W氙灯(λ > 420 nm)为光源,研究了所得产物的可见光催化降解性能.结果表明,与纯的TiO2和g-C3N4相比,Ti3+自掺杂TiO2纳米管/g-C3N4复合材料具有最佳的光催化降解性能,光催化降解80 min时,对RhB的降解率达98.4%.这得益于Ti3+及TiO2-x纳米管与g-C3N4构筑的异质结提高了材料对可见光的响应性能,加快了光生电子的传输和分离,降低了电子和空穴的复合几率.
  • 加载中
  • [1] 杨静,崔世海,陈慧慧,等. 磁载纳米TiO2复合材料光催化材料的研究进展[J]. 环境化学,2014,33(11): 1930-1935.

    YANG J,CUI S H,CHEN H H,et al. Research progress on magnetic TiO2 composite nano-photocatalysts[J]. Environmental Chemistry,2014,33(11): 1930-1935(in Chinese).

    [2] WANG Q Y,QIAO J L,JIN R C,et al. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties[J]. Journal of Power Sources,2015,277: 480-485.
    [3] TACHIKAWA T,FUJITSUKA M,MAJIMA T. Mechanistic insight into the TiO2 Photocatalytic Reactions: Design of new photocatalysts[J]. Journal of Physical Chemistry C,2007,111(14): 5259-5275.
    [4] ASAHI R,MORIKAWA T,OHWAKI T,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528): 269-271.
    [5] 李琪,韩立娟,刘刚,等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学,2013,32(6): 1073-1080.

    LI Q,HAN L J,LIU G,et al. Synthesis,characterization and degradation performance of V-N-doped TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry,2013,32(6): 1073-1080(in Chinese).

    [6] KAMEGAWA T,YAMAHANA D,YAMASHITA H. Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic Activity[J]. Journal of Physical Chemistry C,2010,114(35): 15049-15053.
    [7] WANG X T,LI Y M,LIU X,et al. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chinese Journal of Catalysis,2015,36(3): 389-399.
    [8] LIU X,GAO S M,XU H,et al. Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity[J]. Nanoscale,2013,5(5): 1870-1875.
    [9] WAN Z,HUANG G F,HUANG W Q,et al. The enhanced photocatalytic activity of Ti3+ self-doped TiO2 by a reduction method[J]. Materials Letters,2014,122(5): 33-36.
    [10] DAI K,LU L H,LIANG C H,et al. Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation[J]. Applied Catalysis B: Environmental,2014,156-157: 331-340.
    [11] WANG X C,BLECHERT S,ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. ACS Catalysis,2012,2(8): 1596-1606.
    [12] ZHANG J S,CHEN X F,TAKANABE K,et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie International Edition,2010,49(2): 441-444.
    [13] YAN H J,YANG J H,MA G J,et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis,2009,266(2): 165-168.
    [14] LI X,XIA J X,XU H,et al. Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance[J]. Journal of Power Sources,2014,245: 866-874.
    [15] YU J G,WANG S H,LOW J X,et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics,2013,15(39): 16883-16890.
    [16] WANG J,ZHANG W D. Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity[J]. Electrochimica Acta,2012,71(3): 10-16.
    [17] LI K,GAO S M,Wang Q Y,et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Material & Interfaces,2015,7(17): 9023-9030.
    [18] HE Y M,ZHANG L H,FAN M H,et al. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction[J]. Solar Energy Materials & Solar Cells,2015,137: 175-184.
  • 加载中
计量
  • 文章访问数:  838
  • HTML全文浏览数:  747
  • PDF下载数:  661
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-19
  • 刊出日期:  2016-05-15
李凯, 魏停, 高政纲, 高善民. Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能[J]. 环境化学, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004
引用本文: 李凯, 魏停, 高政纲, 高善民. Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能[J]. 环境化学, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004
LI Kai, WEI Ting, GAO Zhenggang, GAO Shanmin. Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites[J]. Environmental Chemistry, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004
Citation: LI Kai, WEI Ting, GAO Zhenggang, GAO Shanmin. Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites[J]. Environmental Chemistry, 2016, 35(5): 1020-1026. doi: 10.7524/j.issn.0254-6108.2016.05.2015112004

Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能

  • 1. 鲁东大学化学与材料科学学院, 烟台, 264025
基金项目:

山东省自然科学基金重点基金(ZR2013EM001),山东省科技发展计划(2014GSF117015)资助.

摘要: 以低温退火制得的TiO2纳米管和三聚氰胺为原料,经过一步煅烧制备Ti3+自掺杂TiO2纳米管/g-C3N4复合材料.采用热重分析(TGA)、X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的热稳定性、组成、结晶性、形貌、化学价态和光学性能等进行了表征.结果表明,将H2Ti3O7预处理后再与三聚氰胺混合热处理,产物是Ti3+自掺杂TiO2纳米管/g-C3N4复合材料,而未经预处理的H2Ti3O7与三聚氰胺混合后热处理得到的是Ti3+自掺杂TiO2纳米颗粒/g-C3N4复合材料.罗丹明B((RhB)水溶液为模拟废水,以300 W氙灯(λ > 420 nm)为光源,研究了所得产物的可见光催化降解性能.结果表明,与纯的TiO2和g-C3N4相比,Ti3+自掺杂TiO2纳米管/g-C3N4复合材料具有最佳的光催化降解性能,光催化降解80 min时,对RhB的降解率达98.4%.这得益于Ti3+及TiO2-x纳米管与g-C3N4构筑的异质结提高了材料对可见光的响应性能,加快了光生电子的传输和分离,降低了电子和空穴的复合几率.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回