石墨烯掺杂生物阳极微生物燃料电池的产电性能

薛丽仙, 杨娜, 任月萍, 李秀芬, 华兆哲, 王新华. 石墨烯掺杂生物阳极微生物燃料电池的产电性能[J]. 环境化学, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601
引用本文: 薛丽仙, 杨娜, 任月萍, 李秀芬, 华兆哲, 王新华. 石墨烯掺杂生物阳极微生物燃料电池的产电性能[J]. 环境化学, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601
XUE Lixian, YANG Na, REN Yueping, LI Xiufen, HUA Zhaozhe, WANG Xinhua. Performance of microbial fuel cell with graphene doped bioanode[J]. Environmental Chemistry, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601
Citation: XUE Lixian, YANG Na, REN Yueping, LI Xiufen, HUA Zhaozhe, WANG Xinhua. Performance of microbial fuel cell with graphene doped bioanode[J]. Environmental Chemistry, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601

石墨烯掺杂生物阳极微生物燃料电池的产电性能

  • 基金项目:

    国家自然科学基金(21206058),水体污染控制与治理科技重大专项子课题(2012ZX07101-013-04)资助.

Performance of microbial fuel cell with graphene doped bioanode

  • Fund Project: Supported by the National Natural Science Foundation of China (21206058), the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07101-013-04).
  • 摘要: 本文通过真空过滤含有石墨烯的产电菌悬液直接在不锈钢网(SSM)表面形成石墨烯掺杂生物阳极,并运行单室微生物燃料电池(Microbial Fuel Cell,MFC)考察其对体系运行性能的影响.实验结果表明,向生物膜中掺杂石墨烯可有效缩短MFC的启动时间,降低阳极的内阻,提高阳极生物膜内的电子传递效率.与纯生物膜阳极体系相比,随着掺杂量的增加,石墨烯掺杂生物阳极MFC体系的阳极电荷转移电阻(Rct)依次降低,由29.3 Ω降低到18.1 Ω,体系的库伦效率(CE)由50.03%增大到73.97%,体系的最大功率密度(Pmax)由纯生物膜阳极体系的118 mW·m-2增大到588 mW·m-2.
  • 加载中
  • [1] 蒋杭城,许蕾,谢静,等.超声预处理对剩余污泥微生物燃料电池性能的影响[J].环境化学,2015,34(5):989-994.

    JIANG H C,XU L,XIE J,et al.The effect of ultrasonic pretreated excess sludge on the performance of microbial fuel cells[J].Environmental Chemistry,2015,34(5):989-994(in Chinese).

    [2] AHN Y,HATZELL M C,ZHANG F,et al. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater[J]. Journal of Power Sources,2014,249: 440-445.
    [3] POUS N,PUIG S,COMA M,et al. Bioremediation of nitrate-polluted groundwater in a microbial fuel cell[J]. Journal of Chemical Technology & Biotechnology,2013,88(9): 1690-1696.
    [4] AMANDEEP K,JUNG R M,IAIN M,et al. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities[J]. Biosensors & Bioelectronics,2013,47: 50-55.
    [5] DONOVAN C,DEWAN A,HEO D,et al. Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring[J]. Journal of Power Sources,2013,233: 79-85.
    [6] YANG Y Y,CHUN X G,YANG C Y,et al. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode[J]. Chemosphere,2015,140:26-33.
    [7] LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology,2009,7(5): 375-381.
    [8] 吴瑾妤,赵娟,李秀芬,等. 基于pH值调控的沉积型微生物燃料电池(SMFC)运行特性[J]. 环境化学,2011,30(6): 1162-1167.

    WU J Y,ZHAO J,LI X F,et al.pH regulation of sediment microbial fuel cell performance[J].Environmental Chemistry,2011,30(6):1162-1167(in Chinese).

    [9] YONG Y C,CAI Z,YU Y Y,et al. Increase of riboflavin biosynthesis underlies enhancement of extracellular electron transferof Shewanella in alkaline microbial fuel cells[J]. Bioresource Technology,2013,130: 763-768.
    [10] YUAN Y,ZHOU S G,XU N,et al. Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer[J]. Applied Microbiology & Biotechnology,2011,89(5):1629-1635.
    [11] YU Y Y,CHEN H L,YONG Y C,et al. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells[J]. Chemical Communications,2011,47(48):12825-12827.
    [12] WANG X,GAO N,ZHOU Q,et al. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells[J]. Bioresource Technology,2013,144(3): 632-636.
    [13] KANG YL,IBRAHIM S,PICHIAH S. Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application[J]. Bioresource Technology,2015,189:364-369.
    [14] AELTERMAN P,FREGUIA S,KELLER J,et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Applied Microbiology & Biotechnology,2008,78(3): 409-418.
    [15] LIU Y,HARNISCH F,FRICKE K,et al. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure[J]. Biosensors & Bioelectronics,2008,24(4):1006-1011.
    [16] MANOHAR A K,BRETSCHGER O,NEALSON K H,et al. The polarization behavior of the anode in a microbial fuel cell[J]. Electrochimica Acta,2008,53(9): 3508-3513.
    [17] MANOHAR A K,MANSFELD F. The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions[J]. Electrochimica Acta,2009,54(6):1664-1670.
  • 加载中
计量
  • 文章访问数:  530
  • HTML全文浏览数:  465
  • PDF下载数:  756
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-26
  • 刊出日期:  2016-05-15
薛丽仙, 杨娜, 任月萍, 李秀芬, 华兆哲, 王新华. 石墨烯掺杂生物阳极微生物燃料电池的产电性能[J]. 环境化学, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601
引用本文: 薛丽仙, 杨娜, 任月萍, 李秀芬, 华兆哲, 王新华. 石墨烯掺杂生物阳极微生物燃料电池的产电性能[J]. 环境化学, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601
XUE Lixian, YANG Na, REN Yueping, LI Xiufen, HUA Zhaozhe, WANG Xinhua. Performance of microbial fuel cell with graphene doped bioanode[J]. Environmental Chemistry, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601
Citation: XUE Lixian, YANG Na, REN Yueping, LI Xiufen, HUA Zhaozhe, WANG Xinhua. Performance of microbial fuel cell with graphene doped bioanode[J]. Environmental Chemistry, 2016, 35(5): 1014-1019. doi: 10.7524/j.issn.0254-6108.2016.05.2015112601

石墨烯掺杂生物阳极微生物燃料电池的产电性能

  • 1. 江苏省厌氧生物技术重点实验室, 江苏省水处理技术与材料协同创新中心, 江南大学环境与土木工程学院, 无锡, 214122
基金项目:

国家自然科学基金(21206058),水体污染控制与治理科技重大专项子课题(2012ZX07101-013-04)资助.

摘要: 本文通过真空过滤含有石墨烯的产电菌悬液直接在不锈钢网(SSM)表面形成石墨烯掺杂生物阳极,并运行单室微生物燃料电池(Microbial Fuel Cell,MFC)考察其对体系运行性能的影响.实验结果表明,向生物膜中掺杂石墨烯可有效缩短MFC的启动时间,降低阳极的内阻,提高阳极生物膜内的电子传递效率.与纯生物膜阳极体系相比,随着掺杂量的增加,石墨烯掺杂生物阳极MFC体系的阳极电荷转移电阻(Rct)依次降低,由29.3 Ω降低到18.1 Ω,体系的库伦效率(CE)由50.03%增大到73.97%,体系的最大功率密度(Pmax)由纯生物膜阳极体系的118 mW·m-2增大到588 mW·m-2.

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回