臭氧灭活水中枯草芽孢杆菌的动力学

刘枫, 昌盛, 陈忠林. 臭氧灭活水中枯草芽孢杆菌的动力学[J]. 环境化学, 2016, 35(5): 858-864. doi: 10.7524/j.issn.0254-6108.2016.05.2015122101
引用本文: 刘枫, 昌盛, 陈忠林. 臭氧灭活水中枯草芽孢杆菌的动力学[J]. 环境化学, 2016, 35(5): 858-864. doi: 10.7524/j.issn.0254-6108.2016.05.2015122101
LIU Feng, CHANG Sheng, CHEN Zhonglin. Inactivation kinetics of Bacillus subtilis spores with ozone[J]. Environmental Chemistry, 2016, 35(5): 858-864. doi: 10.7524/j.issn.0254-6108.2016.05.2015122101
Citation: LIU Feng, CHANG Sheng, CHEN Zhonglin. Inactivation kinetics of Bacillus subtilis spores with ozone[J]. Environmental Chemistry, 2016, 35(5): 858-864. doi: 10.7524/j.issn.0254-6108.2016.05.2015122101

臭氧灭活水中枯草芽孢杆菌的动力学

  • 基金项目:

    国家自然科学基金(51508539),国家水体污染控制与治理重大专项(2014ZX07405-001,2014ZX07415-002)资助.

Inactivation kinetics of Bacillus subtilis spores with ozone

  • Fund Project: Supported by the National Natural Science Foundation (51508539), National Major Projects of Water Pollution Control and Treatment (2014ZX07405-001, 2014ZX07415-002).
  • 摘要: 以枯草芽孢杆菌(ATCC6633)的孢子作为难灭活微生物的代表,研究了消毒剂浓度和反应时间的乘积值(CT值)、pH值、温度对臭氧灭活水中芽孢效果的影响,并探讨了相关灭活反应的动力学特征.结果表明,臭氧灭活芽孢的过程可分为延滞期和灭活期,其灭活反应符合Chick-Watson延迟反应动力学模型.在半连续流反应模式下,当臭氧浓度在0.42-4.00 mg·L-1,反应时间0-20 min,pH值6-8,温度1-30℃范围内时,臭氧对芽孢的灭活效果与臭氧的CT值显著相关,与单独的臭氧浓度无关,CT值越高,所能达到的灭活率也越高.同时,温度对反应速率常数k影响较大,即随着温度的升高,灭活反应的延滞期CTlag显著减小,反应速率常数k增大,臭氧对芽孢的灭活能力增强;而反应速率常数k在各pH值下基本不变,pH值对芽孢的灭活影响甚微.
  • 加载中
  • [1] SHANNON M A, BOHN P W, ELIMELECH M E, et al Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(20): 301-310
    [2] YEON J J, BYUNG S O, JOON W K. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores[J]. Water Research, 2008, 42(6-7): 1613-1621
    [3] STLOW B, MCGINNIS K A, RAGKOUSI K, et al. Effects of major spore-specific DNA binding proteins on Bacillus subtilis sporulation and spore properties[J]. Bacteriology, 2000, 182(24): 6906-6912
    [4] ESSAM A M, GUI S P, CHOI I W, et al. Comparison of Fe(Ⅵ) (Fe) and ozone in inactivating Bacillus subtilis spores[J]. Chemosphere, 2011, 83(9): 1228-1233
    [5] ERICK R B, ROBERTO P, ANGEL E V L, et al. Bacillus subtilis spore inactivation in water using photo-assisted Fenton reaction[J]. Sustain Environmental Research, 2011, 21(5): 285-290
    [6] CHO M, GANDHI V, HWANG T M, et al. Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine[J]. Water Research, 2011, 45(3): 1063-1070
    [7] CHO M, CHUNG H, YOON J. Effect of pH and importance of ozone initiated radical reactions in inactivating Bacillus subtilis spore[J]. Ozone Science Engineering, 2002, 24(2): 145-150
    [8] CHO M, KIM J H, YOON J Y. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants[J]. Water Research, 2006, 40(15): 2911-2920
    [9] CHIOU C F, MARINAS B J, ADAMS J Q. Modified indigo method for gaseous and aqueous ozone analyses[J]. Ozone Science & Engineering, 1995, 17(3): 329-344
    [10] LARSON M A, MARINAS B J. Inactivation of Bacillus subtilis spores with ozone and monochloramine[J]. Water Research, 2003, 37(4): 833-844
    [11] HUNT N K, MARINAS B J. Kinetics of Escherichia coli inactivation with ozone[J]. Water Research, 1997, 31(6): 1355-1362
    [12] RENNECKER J L, MARINAS B J, OWENS J H, et al. Inactivation of Cryptosporidium parvum oocysts with ozone[J]. Water Research, 1999, 33(11): 2481-2488
    [13] US Environmental Protection Agency. National primary drinking water regulations: Long term 1 enhanced surface water treatment rule; final rule[M]. Federal Register,2002, 67(9):1812
    [14] U.S. Army center for health promotion and preventive medicine. Technical guide 188: U.S. Army food and water vulnerability assessment guide[R]. Aberdeen Proving Ground: U.S., 2008
    [15] NICHOLSON W L, GALEANO B. UV resistance of Bacillus anthracis spores revisited: Validation of Bacillus subtilis spores as UV surrogates for spores of B. Anthracis Sterne[J]. Applied Environment Microbiology, 2003, 69(2): 1327-1330
    [16] FACILE N, BARBEAU B, PREVOST M, et al. Evaluating bacterial aerobic spores as a surrogated for giardia and cryptosporidium inactivation by ozone[J]. Water Research, 2000, 34(12): 3238-3246
    [17] RENNECKER J L, DRIEDGER A M, RUBIN S A, et al. Role of disinfectant concentration and pH in the inactivation kinetics of Cryptosporidium parvum oocysts with ozone and monochloramine[J]. Environmental Science & Technology, 2001, 35(13): 2752-2757.
  • 加载中
计量
  • 文章访问数:  1141
  • HTML全文浏览数:  1049
  • PDF下载数:  497
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-21
  • 刊出日期:  2016-05-15

臭氧灭活水中枯草芽孢杆菌的动力学

  • 1.  哈尔滨工业大学, 城市水资源与水环境国家重点实验室, 哈尔滨, 150090;
  • 2.  中国环境科学研究院, 国家环境保护饮用水水源地保护重点实验室, 北京, 100012
基金项目:

国家自然科学基金(51508539),国家水体污染控制与治理重大专项(2014ZX07405-001,2014ZX07415-002)资助.

摘要: 以枯草芽孢杆菌(ATCC6633)的孢子作为难灭活微生物的代表,研究了消毒剂浓度和反应时间的乘积值(CT值)、pH值、温度对臭氧灭活水中芽孢效果的影响,并探讨了相关灭活反应的动力学特征.结果表明,臭氧灭活芽孢的过程可分为延滞期和灭活期,其灭活反应符合Chick-Watson延迟反应动力学模型.在半连续流反应模式下,当臭氧浓度在0.42-4.00 mg·L-1,反应时间0-20 min,pH值6-8,温度1-30℃范围内时,臭氧对芽孢的灭活效果与臭氧的CT值显著相关,与单独的臭氧浓度无关,CT值越高,所能达到的灭活率也越高.同时,温度对反应速率常数k影响较大,即随着温度的升高,灭活反应的延滞期CTlag显著减小,反应速率常数k增大,臭氧对芽孢的灭活能力增强;而反应速率常数k在各pH值下基本不变,pH值对芽孢的灭活影响甚微.

English Abstract

参考文献 (17)

目录

/

返回文章
返回