宁波市不同形态大气汞含量特征及来源分析

王珊珊, 于瑞莲, 赵莉斯, 徐玲玲, 胡恭任. 宁波市不同形态大气汞含量特征及来源分析[J]. 环境化学, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602
引用本文: 王珊珊, 于瑞莲, 赵莉斯, 徐玲玲, 胡恭任. 宁波市不同形态大气汞含量特征及来源分析[J]. 环境化学, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602
WANG Shanshan, YU Ruilian, ZHAO Lisi, XU Lingling, HU Gongren. Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China[J]. Environmental Chemistry, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602
Citation: WANG Shanshan, YU Ruilian, ZHAO Lisi, XU Lingling, HU Gongren. Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China[J]. Environmental Chemistry, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602

宁波市不同形态大气汞含量特征及来源分析

  • 基金项目:

    国家自然科学基金(21477042)和华侨大学2015级研究生科研创新能力培育项目资助.

Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China

  • Fund Project: Supported by the National Natural Science Foundation of China (21477042) and the Program to Foster Innovation Ability of Graduate Students in Huaqiao Universtity,2015.
  • 摘要: 于2015年夏季(6-8月)和冬季(12月、2016年1-2月)利用汞形态分析仪(Tekran 1130/1135/2537B)对宁波市不同形态大气汞进行了连续监测,并对其含量特征和来源进行分析.结果表明,夏季气态单质汞(GEM)、颗粒态汞(PBM)及活性气态汞(RGM)浓度范围分别为1.51-4.88 ng·m-3(均值2.50 ng·m-3)、10.95-646.90 pg·m-3(均值155.49 pg·m-3)和8.64-316.68 pg·m-3(均值88.22 pg·m-3);GEM含量主要受到大气长距离输送和气象条件的影响,PBM受交通影响较大,而RGM受到工业排放及气象条件的影响.冬季GEM、PBM及RGM浓度范围分别为1.73-5.33 ng·m-3(均值2.89 ng·m-3)、133.87-1723.99 pg·m-3(均值713.15 pg·m-3)和17.52-309.17 pg·m-3(均值96.94 pg·m-3);GEM受长距离输送的影响,PBM除来自燃煤和交通外,还受到生物质燃烧和烟花爆竹排放的影响,而RGM的主要来源是工业排放.后向气团轨迹分析结果表明,我国北部为高浓度汞源,而海上气团携带汞含量较低.
  • 加载中
  • [1] CHEN J, HINTELMANN H, ZHENG W, et al. Isotopic evidence for distinct sources of mercury in lake waters and sediments[J]. Chemical Geology, 2016, 426:33-44.
    [2] YIN R, FENG X, ZHANG J, et al. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China[J]. Chemosphere, 2015, 147:173-179.
    [3] SCHROEDER W H, MUNTHE J. Atmospheric mercury-An overview[J]. Atmospheric Environment, 1998, 32(5):809-822.
    [4] WU Y, WANG S X, STREETS D G, et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environmental Science and Technology, 2006, 40(17):5312-5318.
    [5] STREETS D G, HAO J, WU Y, et al. Anthropogenic mercury emissions in China[J]. Atmospheric Environment, 2005, 39(40):7789-7806.
    [6] CHEN L, LIU M, XU Z, et al. Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A highly industrial region in South China influenced by seasonal monsoons[J]. Atmospheric Environment, 2013, 77(7):757-766.
    [7] FRIEDI H R, ARELLANO A F, GENG F, et al. Measurements of atmospheric mercury in Shanghai during September 2009[J]. Atmospheric Chemistry & Physics, 2010, 11(8):3781-3788.
    [8] ZHU J, WANG T, TALBOT R, et al. Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China[J]. Atmospheric Chemistry & Physics, 2012, 12(9):25037-25080.
    [9] FU X, FENG X, QIU G, et al. Speciated atmospheric mercury and its potential source in Guiyang, China[J]. Atmospheric environment, 2011, 45(25):4205-4212.
    [10] HUANG J, LIU C K, HUANG C S, et al. Atmospheric mercury pollution at an urban site in central Taiwan:Mercury emission sources at ground level[J]. Chemosphere, 2012, 87(5):579-585.
    [11] WAN Q, FENG X, LU J, et al. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes[J]. Environmental Research, 2009, 109(6):721-727.
    [12] XU L, CHEN J, YANG L, et al. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China[J]. Chemosphere, 2014, 119C:530-539.
    [13] 狄一安, 杨勇杰, 马志强, 等. 北京市城区北部大气气态汞的特征分析[J]. 环境化学, 2012, 31(10):1656-1657.

    DI Y A, YANG Y J, MA Z Q, et al. Characteristics of gaseous mercury in the northern of Beijing, China[J]. Environmental Chemistry, 2012, 31(10):1656-1657(in Chinese).

    [14] ASHBAUGH L L, MALM W C, SADEH W Z. A residence time probability analysis of sulfur concentrations at grand Canyon National Park[J]. Atmospheric Environment, 1985, 19(8):1263-1270.
    [15] WANG C, CI Z, WANG Z, et al. Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea[J]. Atmospheric Environment, 2016, 131:360-370.
    [16] FOY B D, TONG Y, YI X, et al. First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight[J]. Atmospheric Environment, 2016, 134:27-39.
    [17] LINDERRG S, BULLOCK R, EBINGHAUS R, et al. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition[C].//International Conference on Mercury as A Global Pollutant. 2007:19-32.
    [18] 张静静, 郑娜, 周秋红, 等. 内蒙古自治区原煤中汞含量分布及燃煤大气汞排放量估算[J]. 环境化学, 2014, 33(9):1613-1614.

    ZHANG J J, ZHENG N, ZHOU Q H, et al. Estimation of mercury emission from coal combustion in Inner Mongolia, China[J]. Environmental Chemistry, 2014, 33(9):1613-1614(in Chinese).

    [19] FANG F, WANG Q, Li J. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China:Source, cycle, and fate[J]. Science of the Total Environment, 2004, 330(1/3):159-170.
    [20] KIM S H, HAN Y J, HOLEN T M, et al. Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(Ⅱ) and Hg(p)) in Seoul, Korea[J]. Atmospheric Environment, 2009, 43(20):3267-3274.
    [21] 窦红颖, 王书肖, 王龙, 等. 长三角背景地区秋冬季节大气气态总汞含量特征研究[J]. 环境科学, 2013, 34(1):1-7.

    DOU H Y, WANG S X, WANG L, et al. Characteristics of total gaseous mercury concentrations at a rural site of Yangtze Delta, China[J]. Environmental Science, 2013, 34(1):1-7(in Chinese).

    [22] ZHANG F, Xu L, CHEN J, et al. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009 May 2010[J]. Atmospheric Research, 2012, 106:150-158.
    [23] GRATZ L E, KEELER G J, MARSIK F J, et al. Atmospheric transport of speciated mercury across southern Lake Michigan:Influence from emission sources in the Chicago/Gary urban area[J]. Science of the Total Environment, 2012, 448(6):84-95.
    [24] 张鑫, 蔡旭晖, 柴发合. 北京市秋季大气边界层结构与特征分析[J]. 北京大学学报:自然科学版, 2006, 42(2):220-225.

    ZHANG X, CAI X H, CHAI F H. Structures and characteristics of the atmospheric boundary layer over Beijing Area in autumn[J]. Acta Scientiarum NaturaIium Universitatis Pekinensis, 2006, 42(2):220-225(in Chinese).

    [25] CHOI H D, HOLSEN T M, HOPKE P K. Atmospheric mercury (Hg) in the adirondacks:Concentrations and sources[J]. Environmental Science & Technology, 2008, 42(15):5644-5653.
  • 加载中
计量
  • 文章访问数:  1662
  • HTML全文浏览数:  1608
  • PDF下载数:  396
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-06-06
  • 刊出日期:  2017-02-15
王珊珊, 于瑞莲, 赵莉斯, 徐玲玲, 胡恭任. 宁波市不同形态大气汞含量特征及来源分析[J]. 环境化学, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602
引用本文: 王珊珊, 于瑞莲, 赵莉斯, 徐玲玲, 胡恭任. 宁波市不同形态大气汞含量特征及来源分析[J]. 环境化学, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602
WANG Shanshan, YU Ruilian, ZHAO Lisi, XU Lingling, HU Gongren. Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China[J]. Environmental Chemistry, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602
Citation: WANG Shanshan, YU Ruilian, ZHAO Lisi, XU Lingling, HU Gongren. Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China[J]. Environmental Chemistry, 2017, 36(2): 274-281. doi: 10.7524/j.issn.0254-6108.2017.02.2016060602

宁波市不同形态大气汞含量特征及来源分析

  • 1.  华侨大学环境科学与工程系, 厦门, 361021;
  • 2.  中国科学院城市环境研究所, 厦门, 361021
基金项目:

国家自然科学基金(21477042)和华侨大学2015级研究生科研创新能力培育项目资助.

摘要: 于2015年夏季(6-8月)和冬季(12月、2016年1-2月)利用汞形态分析仪(Tekran 1130/1135/2537B)对宁波市不同形态大气汞进行了连续监测,并对其含量特征和来源进行分析.结果表明,夏季气态单质汞(GEM)、颗粒态汞(PBM)及活性气态汞(RGM)浓度范围分别为1.51-4.88 ng·m-3(均值2.50 ng·m-3)、10.95-646.90 pg·m-3(均值155.49 pg·m-3)和8.64-316.68 pg·m-3(均值88.22 pg·m-3);GEM含量主要受到大气长距离输送和气象条件的影响,PBM受交通影响较大,而RGM受到工业排放及气象条件的影响.冬季GEM、PBM及RGM浓度范围分别为1.73-5.33 ng·m-3(均值2.89 ng·m-3)、133.87-1723.99 pg·m-3(均值713.15 pg·m-3)和17.52-309.17 pg·m-3(均值96.94 pg·m-3);GEM受长距离输送的影响,PBM除来自燃煤和交通外,还受到生物质燃烧和烟花爆竹排放的影响,而RGM的主要来源是工业排放.后向气团轨迹分析结果表明,我国北部为高浓度汞源,而海上气团携带汞含量较低.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回