4-BDE胁迫对毛白杨组培苗不定根发生的影响

张晓丹, 才满, 张爽, 杜克久. 4-BDE胁迫对毛白杨组培苗不定根发生的影响[J]. 环境化学, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
引用本文: 张晓丹, 才满, 张爽, 杜克久. 4-BDE胁迫对毛白杨组培苗不定根发生的影响[J]. 环境化学, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
ZHANG Xiaodan, CAI Man, ZHANG Shuang, DU Kejiu. Effcets of 4-BDE on adventitious rooting of tissue culture seedlings of Populus tomentosa[J]. Environmental Chemistry, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
Citation: ZHANG Xiaodan, CAI Man, ZHANG Shuang, DU Kejiu. Effcets of 4-BDE on adventitious rooting of tissue culture seedlings of Populus tomentosa[J]. Environmental Chemistry, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101

4-BDE胁迫对毛白杨组培苗不定根发生的影响

  • 基金项目:

    “十二五”农村领域国家科技计划课题(2012AA101403),环境化学与生态毒理学国家重点实验室开放基金课题(KF2009-03)和国家自然科学基金项目(30972384)资助.

Effcets of 4-BDE on adventitious rooting of tissue culture seedlings of Populus tomentosa

  • Fund Project: Supported by the National High Technology Research and Development Program of China(2012AA101403),the State Key Laboratory of Environmental Chemistry and Ecotoxicology(KF2009-03)and National Natural Science Foundation of China(30972384).
  • 摘要: 为了解一溴代联苯醚(4-monobrominated diphenyl ether,4-BDE)的植物修复机制,本文研究了不同浓度4-BDE处理对毛白杨组培苗不定根的形态、分化状况、细胞组织学以及部分生理特性的影响.发现一定浓度的4-BDE处理对毛白杨组培苗不定根的分化表现出先抑制后促进的效应,说明4-BDE可能具有一定的植物生长素生物效应.在4-BDE的诱导处理下,组培苗不定根的颜色变深,300 mg·L-1时根呈黑褐色且受到明显的伸长抑制,但并未坏死.与对照苗相比,4-BDE诱导处理的毛白杨组培苗不定根的显微结构发生明显变化,表现为根皮层细胞内含物增多,皮层细胞排列变紧密.高浓度30 mg·L-1 4-BDE处理23 d的组培苗不定根丙二醛(MDA)含量显著高于处理47 d和58 d的(P-1 4-BDE处理的过氧化物酶(POD)活性显著高于对照组(P-1 4-BDE处理的组培苗不定根的MDA含量呈现先上升后下降的趋势,POD活性呈逐渐上升的趋势.以上结果初步显示,毛白杨组培苗不定根对4-BDE胁迫具有一定的适应能力.
  • 加载中
  • [1] 李子扬,陈永亨.多溴联苯醚的环境行为及其生态毒理效应[J]. 科学技术与工程, 2011, 11(1):97-105.

    LI Z Y, CHEN Y H. The Environmental behavior and ecotoxicological effects of polybrominated diphenyl ethers(PBDEs)[J]. Science Technology and Environmental, 2011, 11(1):97-105(in Chinese).

    [2] HOH E, ZHU L Y, HITES R A. Novel flame retardants, 1,2-bis(2,4,6-tribromophenoxy) ethane and 2,3,4,5,6-pentabromoethylbenzene in United States' environmental samples[J]. Environmental Science & Technology, 2005, 39(8):2472-2477.
    [3] 程吟文,谷成刚,王静婷,等.多溴联苯醚微生物降解过程与机理的研究进展[J].环境化学,2015,34(4):637-648.

    CHENG Y W, GU C G, WANG J T, et al. Recent advances in mechanism and processes of microbial degradation of polybrominated diphenyl ethers[J].Environmental Chemistry, 2015, 34(4):637-648(in Chinese).

    [4] 薛铮然,李海静.高效溴系阻燃剂十溴联苯醚生产工艺研究[J].山东化工, 2002, 31,(4):3l-32.

    XUE Z R, LI H J. The productive mechanism and technology research of new highly efficiency flame retardant of decabromodiphehyl Ether[J]. Shandong Chemical Industry, 2002, 31,(4):3l-32(in Chinese).

    [5] 郝迪,亦如瀚,吴俣,等.贵屿地区不同类型农业土壤多溴联苯醚的污染特征和暴露评估[J].农业环境科学学报,2015,34(5):882-890.

    HAO D,YI R H,WU Y, et al. Pollution characteristics and exposure risk assessment of polybrominated diphenyl ethers in different types agricultural soils in guiyu area[J]. Journal of Agro-Environment Science, 2015,34(5):882-890(in Chinese).

    [6] 曾光明,刘敏茹,陈耀宁,等.土壤中多溴联苯醚研究进展[J].土壤学报,2014,51(5):934-943.

    ZENG G M,LIU M R,CHEN Y N, et al. Advancement in research on Polybrominated Diphenyl Ethers (PBDEs) in soil[J]. Acta Pedologica Sinica, 2014,51(5):934-943(in Chinese).

    [7] 齐彭德,陆光华,梁艳,等.多溴联苯醚的生物效应研究[J].环境科学与技术, 2011, 34(11):11-17.

    QI P D,LU G H,LIANG Y, et al. Biological effects of polybrominated diphenyl ethers in organismand human[J]. Environmental Science & Technology, 2011, 34(11):11-17(in Chinese).

    [8] HU G C, DAI J Y, XU Z C, et al. Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian Lake, North China[J]. Environment International, 2010, 36(4):309-315.
    [9] WU J P,LUO X J,ZHANG Y, et al. Bioaccumulation of polybrominated diphenyl ethers(PBDEs) and polychlorinated biphenyls(PCBs) in wild aquatic species from an electronic waste(e-waste) recycling site in South China[J].Environment International,2008,34(8):1109-1113.
    [10] MA J,QIU X H,ZHANG J L, et al. State of polybrominated diphenyl ethers in China:An overview[J]. Chemosphere,2012,88(7):769-778.
    [11] HUANG Y, CHEN L,PENG X, et al. PBDEs in indoor dust in South-Central China:Characteristics and implications[J].Chemosphere,2010,8(2):169-174.
    [12] WANG J, MA Y J, CHEN S J, et al. Brominated flame retardants in house dust from e-waste recycling and urban areas in South China:Implications on human exposure[J].Environment International, 2010, 36(6):535-541.
    [13] 赵云峰,张锐,张磊,等. 2007年北京地区母乳中多溴联苯醚污染水平的分析[J].卫生研究, 2010, 39(3):326-330.

    ZHAO Y F,ZHANG R,ZHANG L, et al. Polybrominated dipenyl ethers (PBDEs) in breast milk samples from Beijng in 2007[J]. Journal of Hygiene Research, 2010,39(3):326-330(in Chinese).

    [14] TAKUMI T, KURUNTHACHALAM SR, HIROAKI T. Impact of fermented brown rice with Aspergillus oryzae (FEBRA) intake and concentrations of polybrominated diphenylethers (PBDEs) in blood of humans from Japan[J]. Chemosphere, 2004,57(8):795-811.
    [15] DE WIT C.A. An overview of brominated flame retardants in the environment[J].Chemosphere,2002,46(5):583-624.
    [16] MUIR D C G, BACKUS S, DEROCHER A E, et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland and Svalbard[J]. Environmental Science & Technology, 2006, 40(2):449-455.
    [17] 周冰,仇雁翎.多溴联苯醚及其环境行为[J]. 环境科学与技术,2008,31(5):57-61.

    ZHOU B, CHOU Y L. Polybrominated diphenyl ether s and its environmental behavior[J]. Environmental Science & Technology, 2008, 31(5):57-61(in Chinese).

    [18] ROBROCK K R, KORYTAR P, ALVAREZ-COHEN L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers[J].Environmental Science&Technology,2008,42(8):2845-2852.
    [19] FANG L,HUANG J,YU G, et al. Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane[J].Chemosphere,2008,71(2):258-267.
    [20] 郭杨,王世和.多溴联苯醚的微生物降解研究[J].中国沼气,2008,26(4):3-6.

    GUO Y, WANG S H. Biodegradation of polybrominated diphenyl ethers[J].China Biogas, 2008,26(4):3-6(in Chinese).

    [21] SHIH Y, CHOU H L, PENG Y H. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge[J].Journal of Hazardous Materials,2012,213-214:341-346.
    [22] RICHARDSON V M, STASKAL D F, ROSS D G, et al. Possible mechanisms of thyroid hormone disruption in mice by BDE-47,a major polybrominated diphenyl ether congener[J].Toxicology and Applicd Pharmacology,2008,226(3):244-250.
    [23] MILANO J C, YASSIN HUAAAN S, VERNET J L. Photochemical degradation of 4-bromodiphenyl ether:Influence of hydrogen peroxide[J].Chemosphere,1992,25(30):353-360.
    [24] 田生科,李廷轩,彭红云,等.铜胁迫对海州香薷和紫花香薷根系形态及铜富集的影响[J].水土保持学报,2005,19(3):97-100

    ,183. TIAN S K,LI Y X,PENG H Y, et al. Influence of Cu toxcity on root morphology and Cu accumulation of Elsholtz ia splendens and Elsholtz ia argyi[J]. Journal of Soil and Water Conservation,2005,19(3):97-100,183(in Chinese).

    [25] 李锋,李木英,潘晓华,等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J].中国水稻科学,2004,18(1):48-52.

    LI F,LI M Y,PAN X H, et al. Biochemical and physiological characteristics in seedlings roots of different rice cultivars under low-phosphorus stress[J]. Chinese J Rice Sci,2004,18(1):48-52(in Chinese).

    [26] 李和平.植物显微技术[M].北京:科学出版社,2009. LI H P. Plant microtechnology[M].Beijing:Science Press, 2009(in Chinese).
    [27] 余前媛.植物生理学实验教程[M].北京:北京理工大学出版社,2014. YU Q Y. Plant Physiology experiment course[M].Beijing:Beijing Institute of Technology Press, 2014(in Chinese).
    [28] 张佩华,韦颖,李鹏善,等.苍耳在PAHs胁迫下的根系响应[J].江苏农业科学,2015,43(11):458-461.

    ZHANG P H,WEI Y,LI P S, et al. Responses of Xanthium sibiricum Patrin ex Widder roots under the stress of PAHs[J].Jiangsu Agricultural Sciences, 2015,43(11):458-461(in Chinese).

    [29] 李静,郭伟,李青,等.植物激素对毛白杨叶片不定根再生的影响[J].山东农业科学,2007,(3):58-59. LI J, GUO W,LI Q, et al. Effects of plant hormones on adventitious root regeneration of leaves of Populus tomentosa[J].Shandong Agricultural Sciences,2007

    ,(3):58-59(in Chinese).

    [30] 王金祥,陈碧丽,廖红,等.生长素、乙烯和一氧化氮对拟南芥下胚轴插条形成不定根的调节[J]. 植物生理学通讯,2009,45(10):986-990.

    WANG J X,CHEN B L,LIAO H, et al. Regulation of auxin, ethylene and nitric oxide on adventitious rooting in Arabidopsis hypocotyl cuttings[J].Plant Physiology Communications,2009,45(10):986-990(in Chinese).

    [31] KUMMEROVÁ M, ZEZULKA Š, BABULA P, et al. Root response in pisumsativum and zea mays under fluoranthene stress:Morphological and anatomical traits[J]. Chemosphere, 2013,90(2):665-673.
    [32] 陈桐,蔡全英,吴启堂,等.PAEs胁迫对高/低累积品种水稻根系形态及根系分泌低分子有机酸的影响[J].生态环境学报,2015, 24(3):494-500.

    CHEN T,CAI Q Y,WU Q T, et al. Effects of PAE stress on root morphology and low molecular weight organic acid (LMWOC) in root exudates of rice (Oryza sativa L.) cultivars with high- and low-PAE accumulation[J]. Ecology and Environmental Sciences, 2015, 24(3):494-500(in Chinese).

    [33] 蔡新华.重金属胁迫对小麦生长发育的伤害机理研究[D].扬州:扬州大学,2001. CAI X H.The study on the inguring mechanism to the growth and development in wheat under the condition of heavy metal stress[D]. Yangzhou:Yangzhou University,2001(in Chinese).
    [34] 张永峰,殷波.混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J].草业学报,2009,18(1):46-50.

    ZHANG Y F, YIN B. Influences of salt and alkali mixed stresses on antioxidative activity and MDA content of Medicago sativa at seedling stage[J].Acta Pratac Ult Urae Sinica,2009,18(1):46-50(in Chinese).

    [35] 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000. ZOU Q. Plant physiology experiment instruction[M].Beijing:China Agriculture Press, 2000(in Chinese).
    [36] 郑爱珍,刘传平,沈振国.镉处理下青菜和白菜MDA含量、POD和SOD活性的变化[J].湖北农业科学, 2005(1):67-69. ZHENG A Z,LIU C P,SHEN Z G. Effect of cadmium on MDA content, POD and SOD activities of Brassica Pekinensis and Brassica Chinensis[J].Hubei Agricultural Sciences, 2005

    (1):67-69(in Chinese).

  • 加载中
计量
  • 文章访问数:  704
  • HTML全文浏览数:  662
  • PDF下载数:  329
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-07-01
  • 刊出日期:  2017-03-15
张晓丹, 才满, 张爽, 杜克久. 4-BDE胁迫对毛白杨组培苗不定根发生的影响[J]. 环境化学, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
引用本文: 张晓丹, 才满, 张爽, 杜克久. 4-BDE胁迫对毛白杨组培苗不定根发生的影响[J]. 环境化学, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
ZHANG Xiaodan, CAI Man, ZHANG Shuang, DU Kejiu. Effcets of 4-BDE on adventitious rooting of tissue culture seedlings of Populus tomentosa[J]. Environmental Chemistry, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
Citation: ZHANG Xiaodan, CAI Man, ZHANG Shuang, DU Kejiu. Effcets of 4-BDE on adventitious rooting of tissue culture seedlings of Populus tomentosa[J]. Environmental Chemistry, 2017, 36(3): 514-520. doi: 10.7524/j.issn.0254-6108.2017.03.2016070101

4-BDE胁迫对毛白杨组培苗不定根发生的影响

  • 1.  河北农业大学, 保定, 071001;
  • 2.  河北省林木种子资源与森林保护重点实验室, 保定, 071001
基金项目:

“十二五”农村领域国家科技计划课题(2012AA101403),环境化学与生态毒理学国家重点实验室开放基金课题(KF2009-03)和国家自然科学基金项目(30972384)资助.

摘要: 为了解一溴代联苯醚(4-monobrominated diphenyl ether,4-BDE)的植物修复机制,本文研究了不同浓度4-BDE处理对毛白杨组培苗不定根的形态、分化状况、细胞组织学以及部分生理特性的影响.发现一定浓度的4-BDE处理对毛白杨组培苗不定根的分化表现出先抑制后促进的效应,说明4-BDE可能具有一定的植物生长素生物效应.在4-BDE的诱导处理下,组培苗不定根的颜色变深,300 mg·L-1时根呈黑褐色且受到明显的伸长抑制,但并未坏死.与对照苗相比,4-BDE诱导处理的毛白杨组培苗不定根的显微结构发生明显变化,表现为根皮层细胞内含物增多,皮层细胞排列变紧密.高浓度30 mg·L-1 4-BDE处理23 d的组培苗不定根丙二醛(MDA)含量显著高于处理47 d和58 d的(P-1 4-BDE处理的过氧化物酶(POD)活性显著高于对照组(P-1 4-BDE处理的组培苗不定根的MDA含量呈现先上升后下降的趋势,POD活性呈逐渐上升的趋势.以上结果初步显示,毛白杨组培苗不定根对4-BDE胁迫具有一定的适应能力.

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回