光照对湖泊上覆水DON影响机制及环境学意义
Influence of light on DON characteristics in overlying water and its environmental implication
-
摘要: 利用三维荧光光谱和紫外-可见光谱技术,通过室内模拟实验研究了光照对洱海上覆水溶解性有机氮(DON)影响,经平行因子分析法(PARAFAC)和荧光区域积分法(FRI)解析了DON含量、结构组分变化特征,并探讨了其环境学意义.结果表明:(1)未加汞光照条件下,洱海上覆水DON含量随光照时间延长呈波动上升趋势,NH4+与DON含量呈显著负相关(R2=0.94,P4+与DON之间存在相互转化,且光照可能促进了NH4+向DON的转化;(2)加HgCl2后实验组与对照组SUVA254(1.78、1.85)、A253/A203(0.35、0.34)、E2/E3(5.85、5.77)及SR(1.03、1.14)均值差别不大,未加HgCl2实验组较对照组SUVA254、A253/A203、E2/E3值有一定差别,表明光照主要是通过微生物作用,进而影响DON特征,表现为光照增强了DON芳香环取代基结构的复杂程度,并且使得羰基、羧基、羟基和酯基种类有所增多;(3)PARAFAC识别出类蛋白质物质(T峰)和类富里酸物质(A峰)两类组分,表明腐殖质类物质与蛋白质类物质之间可能存在相互转化,且微生物所发挥的作用较为明显.以上结果表明,光照可增强生物活性,进而影响对DON的转化和降解.Abstract: Indoor simulation experiments were conducted to investigate the dissolved organic nitrogen (DON) concentrations in the overlying water from Lake Erhai by 3D fluorescence and ultraviolet-visible spectroscopy techniques. Characteristics of DON content, structure and component were analyzed by parallel factor method (PARAFAC) and fluorescence area integral method, and the environmental significance was also discussed in detail in this study. Results indicated that:(1) in the absence of HgCl2, DON content showed a rising but fluctuating trend with illumination time. NH4+ and DON contents were significantly negative correlated (R2=0.94, P4+ and DON. This suggests that illumination might promote the transformation of NH4+ to DON. (2) The mean values of SUVA254(1.78,1.85),A253/A203(0.35,0.34),E2/E3(5.85,5.77)and SR(1.03,1.14)in the experimental group and control group were similar when HgCl2 was added. But without HgCl2, the values were slightly different, which was characterized by the enhanced DON substituent aromatic ring structure complexity under light condition. And correspondingly, the carbonyl and carboxyl, hydroxyl and ester base types increased. (3) PARAFAC identified two types of components, namely protein type (peak T) and fulvic acid type (peak A). Potential transformation between humic substances and protein existed, during which microbes played an important role. Both point (2) and (3) demonstrated that light could enhance biological activity and further affect the transformation and degradation of DON.
-
Key words:
- light /
- the overlying water /
- character of DON /
- PARAFAC /
- FRI
-
[1] 吴丰昌. 天然有机质及其与污染物的相互作用[M]. 北京:科学出版社, 2010. WU F C. Natural organic matter and its interaction with pollutants[M]. Beijing:Science Press, 2010(in Chinese). [2] BRONK D A, SEE J H, BRADLEY P, et al. DON as a source of bioavailable nitrogen for phytoplankton[J]. Biogeosciences, 2007, 4(3):283-296. [3] JØRGENSEN N O G. Organic nitrogen[M]. Encyclopedia of Inland Waters. Elsevier Science, 2009:832-851. [4] 冯伟莹, 王圣瑞, 张生, 等. pH对洱海沉积物-上覆水溶解性有机质荧光特征影响[J]. 环境化学, 2014, 33(2):229-235. FENG W Y, WANG S R, ZHANG S, et al. Effect of pH on the fluorescence characteristics of dissolved organic matter in the sediment and overlying water from Erhai Lake[J]. Environmental Chemistry, 2014, 33(4):229-235(in Chinese).
[5] SIMSEK H, WADHAWAN T, KHAN E. Overlapping Photodegradable and biodegradable organic nitrogen in wastewater effluents[J]. Environmental Science & Technology, 2013,47:7163-7170. [6] KIEBER R J. LI A A, SEATON P J. Production of nitrite from the photodegradation of dissolved organic matter in natural waters[J]. Environmental Science & Technology, 1999,33:993-998. [7] WANG W W, TARR M A, BIANCHI T S, et al. Ammonium photoproduction from aquatic humic and colloidal matter[J]. Aquatic Geochem, 2000, 6:275-292. [8] VÄHÄTALO A V, ZEPP R G. Photochemcial mineralisation of dissolved organic nitrogen to ammonium in the Baltic Sea[J]. Environmental Science & Technology, 2005, 39:6985-6992. [9] BUSHAW K L, ZEPP R G, TARR Z A, et al. Photochemical release of biologically available nitrogen from aquatic dissolved organic matter[J]. Nature, 1996, 381:404-407. [10] WIEGNER, T N, SEITZINGER S P. Photochemical and microbial degradation of external dissolved organic matter inputs to rivers[J]. Aquatic Microbial Ecology,2001,24:27-40. [11] KOOPMANS D J, BRONK D A. Photochemical production of dissolved inorganic nitrogen and primary amines from dissolved organic nitrogen in waters of two estuaries and adjacent surficial groundwaters[J]. Aquatic Microbial Ecology, 2002,26:295-304. [12] 郭卫东, 夏恩琴, 韩宇超, 等. 九龙江口CDOM的荧光特性研究[J]. 海洋与湖泊, 2005, 36(4):349-357. GUO W D, XIA E Q, HAN Y C, et al. Fluorescent characteristics of colored dissolved organic matter (CDOM) in the Jiulong river estuary[J]. Oceanologia et Limnologia Sinica, 2005,36(4):349-357(in Chinese).
[13] GUO W D, STEDMON C A, HAN Y C, et al. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters[J]. Marine Chemistry, 2007, 107(3):357-366. [14] 华飞, 赵广超, 张靖天, 等. 山口湖沉积物中溶解性有机氮的分布特征[J].环境工程技术学报, 2015, 5(2):129-135. HUA F, ZHAO G C, ZHANG J T, et al. A study on discussion characteristics of dissolved organic nitrogen (DON) in the sediments of lake Shankou[J]. Journal of Environmental Engineering Technology, 2015, 5(2):129-135(in Chinese).
[15] 李杰, 董旭, 王玉鹏, 等. 自然光辐照度测量技术和装置的研究[J]. 质量技术监督研究, 2014, 2:2-5. LI J, DONG X, WANG Y P, et al. Research on techniques and devices of nature sunlight irradiance measurements[J]. Quality and Technical Supervision Research, 2014 , 2:2-5(in Chinese).
[16] KIRKWOOD D S. Stability of solutions of nutrient salts during storage[J]. Marine Chenmistry, 1992, 38(3-4):151-164. [17] 国家环境保护总局. 水和废水监测分析方法[M]. (第四版). 北京:中国环境科学出版社, 2002, 254-284. State Environmental protection Administration. Water and exhausted water monitoring analysis method[M]. Beijing:China Environmental Science Press,2002,254 -284(in Chinese).
[18] WANG S R, JIN X C, NIU D L, et al. Potentially mineralizable nitrogen in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China[J]. Applied Geochemistry, 2009, 24:1778-1792. [19] 李文章, 张莉, 王圣瑞, 等. 洱海上覆水溶解性有机氮特征及其与湖泊水质关系[J]. 中国环境科学, 2016, 36(6):1867-1876. LI W Z, ZHANG L, WANG S R, et al. Characteristics of dissolved organic nitrogen (DON) and relationship with water quanlity in the overlying water of Erhai lake[J]. China Environmental Science, 2016, 36(6):1867-1876(in Chinese).
[20] ZHANG L, WANG S R, ZHAO H C, et al. Using multiple combined analytical techniques to characterize water extractable organic nitrogen from Lake Erhai sediment[J]. Science of the Total Environment, 2016, 542:344-353. [21] SHAO Z H, HE P J, ZHANG D Q, et al. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste[J]. Journal of Hazardous Materials, 2009, 164(2):1191-1197. [22] KORSHIN G V, BENJAMIN M M, SLETTEN R S. Adsorption of natural organic matter(NOM) on iron oxide:Effects on NOM composition and formation of organo-halide compounds during chlorination[J]. Water Research, 1997, 31(7):4702-4708. [23] DORADO J, GONZÁLEZ-VILA F J, ZANCADA M C, et al. Pyrolytic descriptors responsive to changes in humic acid characteristics after long-term sustainable management of dryland farming systems in Central Spain[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68:299-314. [24] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indictators of molecular weight,source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3):955-969. [25] 冯伟莹, 张生, 焦立新, 等. 湖泊沉积物溶解性有机氮组分的藻类可利用性[J]. 环境科学, 2013, 34(6):2176-2183. FENG W Y, ZHANG S, JIAO L X, et al. Bioavailability of dissolved organic nitrogen components in the lake sediment to alage[J]. Environmental Science, 2013,34(6):2176-2183(in Chinese).
[26] BRO R. PATAFAC. Tutorial and applications[J].Chemometrics and Intelligent Laboratory Systems, 1997, 38:149-171. [27] HELMS J R, MAO J D, KLAUS S R, et al. Photochemical flocculation of terrestrial dissolved organic matter and iron[J]. Geochim Cosmochim Acta, 2013, 121:398-413. [28] MESFIOU R, ABDULLA H A N, HATCHER P G. Photochemical alterations of natural and anthropogenic dissolved organic nitrogen in the York River[J]. Environmental Science & Technology, 2015, 49:159-167. [29] PEURAVUORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337:133-149(in Chinese). [30] 任保卫, 赵卫红, 王江涛, 等. 胶州湾围隔实验中溶解有机物三维荧光特征[J]. 环境科学, 2007, 28(4):712-718. REN B W, ZHAO W H, WANG J T, et al. Three-dimensional fluorescence characteristic of dissolved organic matter in marine mesocosm experiment in Jiaozhou Bay, China[J]. Environmental Science, 2007,28(4):712-718(in Chinese).
[31] 刘婷婷. DOM的光降解及其对典型污染物环境行为的影响[D]. 吉林:吉林大学, 2015. LIU T T. The photodegradation of DOM and it's effect on the environmental behavior of typical contaminants[D]. Jinlin:Jilin University,2015(in Chinese). [32] BRO R, KIERS H A L. A new efficient method for determining the number of components in PARAFAC models[J]. Journal of Chemometrics, 2003, 17(5):274-286. [33] 孙艳辉, 蔡华珍, 贾小丽, 等. 菜籽油热氧化过程中荧光光谱特征的变化研究[J]. 分析化学, 2013,41(9):1373-1377. SUN Y H, CAI H Z, JIA X L, et al. Fluorescence spectroscopy characteristics of rapeseed oil during thermal oxidation[J]. Chinese Journal of Analytical Chemistry, 2013,41(9):1373-1377(in Chinese).
[34] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51:325-346.
计量
- 文章访问数: 930
- HTML全文浏览数: 859
- PDF下载数: 388
- 施引文献: 0