基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例

王小平, 张飞, 于海洋, KUNG Hsiang-te. 基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例[J]. 环境化学, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104
引用本文: 王小平, 张飞, 于海洋, KUNG Hsiang-te. 基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例[J]. 环境化学, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104
WANG Xiaoping, ZHANG Fei, YU Haiyang, KUNG Hsiang-te. Comparison of prediction accuracies of tds in the surface water in Ebinur Lake based on multivariate linear model, SVM model, and geostatistics method[J]. Environmental Chemistry, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104
Citation: WANG Xiaoping, ZHANG Fei, YU Haiyang, KUNG Hsiang-te. Comparison of prediction accuracies of tds in the surface water in Ebinur Lake based on multivariate linear model, SVM model, and geostatistics method[J]. Environmental Chemistry, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104

基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例

  • 基金项目:

    国家自然科学基金(41361045,41130531)资助.

Comparison of prediction accuracies of tds in the surface water in Ebinur Lake based on multivariate linear model, SVM model, and geostatistics method

  • Fund Project: Supported by National Natural Science Foundation of China (41361045, 41130531).
  • 摘要: 地表水溶解性总固体(TDS)是地表水各组分浓度的总指标,是地表水水化学特性长期演变的最终结果,也是表征水文地球化学作用过程的重要参数,TDS的高低直接影响地表水的含盐量.本研究以艾比湖流域为研究对象,结合实测地表水TDS数据;选用准同步的Landsat OLI数据,首先,利用光谱诊断指数选取与地表水TDS相关性较高的波段,其次,利用地统计方法、多元线性回归模型和支持向量机(SVM)模型对TDS进行预测,并对其结果进行精度比较.结果表明,SVM模型为最优估测模型,拟合决定系数R2为0.97,均方误差(RMSE)为50.59;多元线性回归模型的精度与SVM模型精度较为接近,拟合决定系数R2为0.9,RMSE为66.55;地统计克里格插值法预测精度最低,拟合决定系数R2为0.87,RMSE为95.73.遥感估测SVM模型预测值在大区域能较好地反映出艾比湖流域TDS的总体特征.该模型在水质遥感领域的应用中具有良好的可行性和有效性,其预测结果也与艾比湖流域水体TDS的实际分布相吻合,因此遥感估测SVM模型在水质估测中具有一定的应用潜力.
  • 加载中
  • [1] 马金珠, 李吉均. 塔里木盆地南缘人类活动干扰下地下水的变化及其生态环境效应[J]. 自然资源学报, 2001, 16(2):134-139.

    MA J Z,LI J J. Impact of human activities on groundwater and the effect on eco-environment in southern Tarim Basin[J]. Journal of Natural Resources, 2001, 16(2):134-139(in Chinese).

    [2] 刘昌明, 陈志恺. 中国水资源现状评价和供需发展趋势分析[M]. 北京:中国水利水电出版社,2001. LIU C M,CHEN Z K. Present evaluation of China water resources and development trend analysis of supply and demand situation[M]. Beijing:China Water Power Press,2001(in Chinese).
    [3] COLLIN M L,MELLOUL A J.Combined land-use and environmental factors for sustainable ground water management[J].Urban Water,2001, 3(3):229-237.
    [4] 王雪蕾,王新新,朱利,等.巢湖流域氮磷面源污染与水华空间分布遥感解析[J].中国环境科学,2015,35(5):1511-1519.

    WANG X L, WANG X X, ZHU L,et al.Spatial analysis on diffuse pollution and algal bloom characteristic with remote sensing in Chao Lake Basin[J].China Environmental Science,2015,35(5):1511-1519(in Chinese).

    [5] 任建华. 黑河流域水资源开发对生态环境的影响[J].水土保持通报, 2005,25(4):92-96.

    REN J H.Effects of water resources exploitation on eco-environment of Heihe River basin[J].Bulletin of Soil and Water Conservation, 2005,25(4):92-96(in Chinese).

    [6] 章光新,邓伟,何岩.洮儿河流域地下水TDS时空变异特征研究[J].水土保持学报,2005,19(2):122-124.

    ZHANG X G, DENG W, HE Y.Characteristics of spatial and temporal variation of TDS of Groundwater in Tao'er River basin[J].Journal of Soil and Water Conservation, 2005,19(2):122-124(in Chinese).

    [7]
    [8] 李东青,梁籍,张立燕.密云库区1991-2011年水质变化趋势研究[J].中国环境科学,2015,35(6):1675-1685.

    LI D Q, LIANG J, ZHANG L Y.The research of water quality trend in the Miyun Reservoir from 1991 to 2011[J].China Environmental Science, 2015,35(6):1675-1685(in Chinese).

    [9] SALAMA R B, OTTO C J, FITZPATRICK R W. Contributions of groundwater conditions to soil and water salinization[J]. Hydrogeology Journal, 1999, 7(1):46-64.
    [10] 烟贯发,杜百利,张冬有,等.松花江哈尔滨段悬浮物含量遥感反演与克里格插值预测精度对比[J].湿地科学, 2015,13(2):180-189.

    YAN G F, DU B L, ZHANG D Y, et al.Comparison of predictionaccuracies of contents of suspended solids by remote sensing inversion and kriging spatial interpolation at harbin section of Songhua River[J].Wetland Science, 2015,13(2):180-189(in Chinese).

    [11] CAMPBELL G, PHINN S R, DEKKER A G, et al. Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images[J]. Remote Sensing of Environment, 2011, 115(9):2402-2414.
    [12] 胡炳清,易鹏,段宁.影响精确界定我国酸雨区空间分布的因素探讨[J].中国环境科学, 2015,35(3):917-924.

    HU B Q, YI P, DUAN N. Study on the influence factors of accurate definition of the spatial distribution of acid rain area in China[J].China Environmental Science, 2015,35(3):917-924(in Chinese).

    [13] ZHANG X Y,SUI Y Y, ZHANG X D, et al.Spatial variability of nutrient properties in black soil of northeast China[J]. Pedosphere,2007,17(1):19-29.
    [14] 竞霞,黄文江,王纪华,等.采用IRS-P6遥感数据监测密云水库水质及评价营养状况[J].农业工程学报,2008,24(增刊):13-17. JING X, HUANG W J, WANG J H,et al. Water quality monitoring and trophic state evaluation in Miyun reservoir based on IRS-P6

    remote sensing data[J]. Transactions of the CSAE, 2008,24(Supp.2):13-17(in Chinese).

    [15] 马媛,师庆东,杨建军.干旱区典型流域土壤微量元素的空间变异特征研究[J].干旱区地理,2006,29(5):682-687.

    MA Y, SHI Q D, YANG J J.Spatial variability of characters of soil trace elements in a watershed of arid area[J].Ari Land Geography,2006,29(5):682-687(in Chinese).

    [16] ZHANG C S, MCGRATH D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma, 2004, 119(3):261-275.
    [17] GLENN N F, CARR J R. The use of geostatistics in relating soil moisture to RADARSAT-1 SAR data obtained over the Great Basin, Nevada, USA[J]. Computers & Geosciences, 2003, 29(5):577-586.
    [18] LI L, LI J, CHENG G. The dynamic monitoring of erhai cyanobacteria based on landsat data[J]. Journal of Water Resources Research, 2016, 5(2):167-173.
    [19] 张晓庆, 李苗, 臧淑英. 扎龙湿地叶绿素a浓度的协同克里格插值[J].中国农学通报, 2013,29(8):160-164.

    ZHANG X Q, LI M, ZANG S Y. Spatial interpolation of the chlorophyll-a concentration in zhalong wetland based on Cokriging[J].Chinese Agricultural Science Bulletin, 2013,29(8):160-164(in Chinese).

    [20] 王水献,王云智, 董新光.焉耆盆地浅层地下水埋深与TDS时空变异及水化学的演化特征[J].灌溉排水学报,2007,26(5)90-93.

    WANG S X, WANG Y Z. DONG X G. The spatio-temporal variation of shallow groundwater TDS depth and It's evolevment characterisitic of water chenistry in Yanqi Basin[J]. Journal of Irrigation and Drainage, 2007,26(5):90-93(in Chinese).

    [21] ZHANG F, TASHPOLAT T, VERNER C,et al. Evaluation of land desertification from 1990 to 2010 and its causes in Ebinur Lake region, Xinjiang China[J]. Environ Earth Sci, 2015,73(9):5731-5745.
    [22] 周梅,张飞,塔西甫拉提·特依拜,等.艾比湖流域水化学指标平面分布特征[J].环境化学,2015,34(9):1694-1702.

    ZHOU M, ZHANG F, TASHPOLAT TIYIP, et al. Spatial distribution of hydro-chemistry characteristics and water quality in Ebinur Lake Basin[J]. Environmental Chemistry,2015,34(9):1694-1702(in Chinese).

    [23] ABDERRAZAK HARTI, RACHID LHISSOU, KAREM CHOKMANI, et al. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain(Morocco)using satellite spectral indices[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,50:64-73.
    [24] YANG Y H, LIU Y X, ZHOU M X,et al. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach[J]. Remote Sensing of Environment,2015,171:14-32.
    [25] 樊彦国,李潭潭,李祥昌.基Landsat8的黄河三角洲盐渍化反演[J].山东农业科学,2015,47(2):119-124.

    FAN Y G, LI T T, LI X J. Soil salinization retrieval for the Yellow River delta based on Landsat 8[J].Shandong Agricultural Sciences, 2015,47(2):119-124(in Chinese).

    [26] 吕恕,朱宏.统计数据中异常值的检验方法讨论[J].东北师大学报自然科学版,1993,25(3):27-31.

    LV S, ZHU H. A discussion about the test of outliers in statistical data[J]. Journal of Northeast Normal University, 1993,25(3):27-31(in Chinese).

    [27] 郭亚男,吴泽宁,高建菊.基于主成分分析的支持向量机需水预测模型及其应用[J].中国农村水利水电, 2012(7):76-83. GUO Y N, WU Z Y, GAO J J. Application of support vector machines based on principal component analysis in water demand prediction[J].China's rural water conservancy and hydropower, 2012

    (7):76-83(in Chinese).

    [28] DING J L, YU D L.Monitoring and evaluating spatial variability of soil salinity in dry and wetseasons in the Werigan-Kuqa Oasis,China,using remote sensing and electromagnetic induction instruments[J].Geoderma, 2014, 235-236:316-322.
    [29] 范晓梅,刘高焕,刘红光.基于Kriging和Cokriging方法的黄河三角洲土壤盐渍化评价[J].资源科学,2014,36(2):321-327.

    FAN X M, LIU G H, LIU H G. Evaluating the spatial distribution of soil salinity in the Yellow River delta based on Kriging and Cokriging methods[J]. Resources Science, 2014,36(2):321-327(in Chinese).

    [30] 徐利岗, 周宏飞, 潘锋. 三工河流域山地-绿洲-荒漠系统降水空间变异性研究[J].地理学报, 2016, 71(5):731-742.

    XU L G, ZHOU H F, PAN F.Spatial variability of precipitation for mountain-oasis-desert system in the Sangong River Basin[J]. Acta Geographica Sinica,2016, 71(5):731-742(in Chinese).

    [31] GOTTSCHALK L, BATCHVAROVA B,GRYNING S B, et al. Scale aggregation comparison of flux estimates from XOPEX[J].Agric for Meteorl,1999, 98:103-119.
    [32] 林卉,梁亮,等.基于支持向量机回归算法的叶面指数高光谱遥感反演[J].农业工程学报,2013,29(11):139-146.

    LIN H, LIANG L, et al. Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(11):139-146(in Chinese).

    [33] 刘双印,徐龙琴,李道亮,等.基于时间相似数据的支持向量机水质溶解氧在线预测[J].农业工程学报,2014,30(3):155-162.

    LIU S Y, XU L Q, LI D L, et al. Online prediction for dissolved oxygen of water quality based on support vector machine with time series similar data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3):155-162(in Chinese).

  • 加载中
计量
  • 文章访问数:  636
  • HTML全文浏览数:  593
  • PDF下载数:  498
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-07-01
  • 刊出日期:  2017-03-15
王小平, 张飞, 于海洋, KUNG Hsiang-te. 基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例[J]. 环境化学, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104
引用本文: 王小平, 张飞, 于海洋, KUNG Hsiang-te. 基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例[J]. 环境化学, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104
WANG Xiaoping, ZHANG Fei, YU Haiyang, KUNG Hsiang-te. Comparison of prediction accuracies of tds in the surface water in Ebinur Lake based on multivariate linear model, SVM model, and geostatistics method[J]. Environmental Chemistry, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104
Citation: WANG Xiaoping, ZHANG Fei, YU Haiyang, KUNG Hsiang-te. Comparison of prediction accuracies of tds in the surface water in Ebinur Lake based on multivariate linear model, SVM model, and geostatistics method[J]. Environmental Chemistry, 2017, 36(3): 666-676. doi: 10.7524/j.issn.0254-6108.2017.03.2016070104

基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比——以艾比湖流域为例

  • 1.  新疆大学资源与环境科学学院, 乌鲁木齐, 830046;
  • 2.  新疆大学绿洲生态教育部重点实验室, 乌鲁木齐, 830046;
  • 3.  新疆智慧城市与环境建模普通高校重点实验室, 乌鲁木齐, 830046;
  • 4.  美国孟菲斯大学地球科学系, 田纳西州 孟菲斯, 38152, 美国
基金项目:

国家自然科学基金(41361045,41130531)资助.

摘要: 地表水溶解性总固体(TDS)是地表水各组分浓度的总指标,是地表水水化学特性长期演变的最终结果,也是表征水文地球化学作用过程的重要参数,TDS的高低直接影响地表水的含盐量.本研究以艾比湖流域为研究对象,结合实测地表水TDS数据;选用准同步的Landsat OLI数据,首先,利用光谱诊断指数选取与地表水TDS相关性较高的波段,其次,利用地统计方法、多元线性回归模型和支持向量机(SVM)模型对TDS进行预测,并对其结果进行精度比较.结果表明,SVM模型为最优估测模型,拟合决定系数R2为0.97,均方误差(RMSE)为50.59;多元线性回归模型的精度与SVM模型精度较为接近,拟合决定系数R2为0.9,RMSE为66.55;地统计克里格插值法预测精度最低,拟合决定系数R2为0.87,RMSE为95.73.遥感估测SVM模型预测值在大区域能较好地反映出艾比湖流域TDS的总体特征.该模型在水质遥感领域的应用中具有良好的可行性和有效性,其预测结果也与艾比湖流域水体TDS的实际分布相吻合,因此遥感估测SVM模型在水质估测中具有一定的应用潜力.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回