模拟日光-非均相Fenton光催化降解喹啉
Simulated sunlight- heterogeneous Fenton degradation of quinoline in wastewater
-
摘要: 以铝-分子筛(Al-MCM-41)为载体,采用加热回流法制备一种非均相芬顿催化剂还原氧化石墨烯-羟基铁/Al-MCM-41(rGO- FeOOH/Al-MCM-41).以喹啉模拟有机废水,考察该催化剂在不同氧化体系、不同H2O2投加量、不同催化剂投加量和不同水质因素(喹啉初始浓度和pH值)条件下对喹啉降解效能的影响,同时考察了催化剂的重复使用性.结果表明,喹啉的光芬顿降解过程符合准一级反应动力学,降解过程中溶液中的NO-3浓度先升高后下降,表明喹啉的吡啶环被打开.对比芬顿反应,模拟日光芬顿反应中光的引入促进羟基自由基的产生,使得喹啉去除率由45%提高到了99%;喹啉降解速率随着催化剂和 H2O2投加量的增加而升高,但投加量过多会消耗·OH 自由基从而抑制喹啉降解,在光芬顿体系中,该催化剂在pH=3.6—9.6的范围内都表现出了很高的活性;当喹啉初始浓度为20 mg·L-1,催化剂投加量为0.5 g·L-1,H2O2投加量为20 mmol·L-1,pH=6.3时,该催化剂对喹啉有很好的矿化效果(TOC去除率为3%).催化剂重复使用性能稳定,重复使用5次喹啉去除率仍高达99%,但TOC去除率略有降低,铁溶出率为0.48%以下.Abstract: The heterogeneous Fenton catalyst reduced graphene oxide-goethite supported on Al-MCM-41(rGO-FeOOH/Al-MCM-41) was prepared by the heating reflux method. The effects of oxidation system, catalyst dosage, H2O2 amount and water quality conditions (initial concentration of quinoline and pH) were investigated for quinoline degradation. The reuse of rGO-FeOOH/Al-MCM-41 was also evaluated. The results showed that quinoline degradation using heterogeneous photo-Fenton method was well-fitted to a pseudo-first-order kinetic model. The concentration of NO-3 in the solution increased firstly and then decreased, which indicated the opening of pyridine ring. In comparison with Fenton reaction, the generation of hydroxyl radicals was promoted by simulated sunlight in the photo-Fenton reaction. The quinolone removal efficiency increased from 45% to 99%. The quinolone removal efficiency increased with the catalyst and H2O2 dosage. However, excessive dosage consumed too much ·OH radicals and inhibited quinoline degradation. In photo-Fenton system, the catalyst exhibited higher activity than that in the Fenton reaction system in a wide pH range (3.6—9.6). Under the optimal condition (20 mg·L-1 of initial quinoline concentration, 0.5 g·L-1 of catalyst dosage, 20 mmol·L-1 of H2O2 dosage, pH=6.3), quinolone and TOC removals were 99% and 3%, respectively. Moreover, the catalyst naintained high activity for quinoline removal (99%) after five times use, but TOC removal decreased slightly. The dissolution rate of Fe was below 0.48%.
-
Key words:
- Al-MCM-41 /
- heterogeneous Fenton /
- quinoline /
- reuse.
-
-
[1] XIA M, LONG M C, YANG Y D, et al. A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution[J]. Applied Catalysis B: Environmental, 2011, 110: 118-125. [2] QIU Z M, HE Y B, LIU X C, et al. Catalytic oxidation of the dye wastewater with hydrogen peroxide[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(9): 1013-1017. [3] 王维明,张冉,王树涛,等. 非均相光Fenton降解4氯酚的研究[J]. 安全与环境学报,2013, 13(1): 31-35. WANG W M, ZHANG R, WANG S T, et al. Degradation efficiency of 4-chlorophenol via heterogeneous photo-Fenton [J]. Journal of Safety and Environment, 2013, 13(1): 31-35 (in Chinese).
[4] 杨泼,胡晓斌,陈泓哲,等. 树脂负载α-FeOOH异相光Fenton降解水中己烷雌酚[J]. 环境化学,2012, 31(8): 1131-1136. YANG P, HU X B, CHEN H Z, et al. Heterogeneous photo-Fenton degradation of hexestrol in water over α-FeOOH-loaded resin [J]. Environmental Chemistry, 2012, 31(8): 1131-1136 (in Chinese).
[5] 赵彬,王向宇. 用于氧化反应的改性介孔分子筛MCM-41研究进展[J]. 工业催化,2013,21(1): 1-5. ZHAO B, WANG X Y. Advances in modification of mesoporous molecular sieve MCM-41 for oxidation reaction [J]. Industrial Catalysis, 2013,21(1): 1-5 (in Chinese).
[6] 王云芳,步长娟,迟志明,等. Al-MCM-41介孔分子筛吸附喹啉的性能[J]. 化工学报,2015, 66(9):3597-3604. WANG Y F, BU C J, CHI Z M, et al. Adsorption of quinoline on zeolite Al-MCM-41 [J]. Journal of Chemical Industry and Engineering(China), 2015, 66(9): 3597-3604 (in Chinese).
[7] HUANG C C, LI C and SHI G Q. Graphene based catalysts[J]. Energy & Environmental Science, 2012(5): 8848-8868. [8] 王小仛,黄霞,胡洪营. O3/UV降解喹啉过程中不同氧化剂的相对重要性[J]. 环境科学,2003,24(3):35-39. WANG X T, HUANG X, HU H Y. The relative importance of different oxidants in the degradation process of quinoline using O3/UV[J]. Environmental Science, 2003,24(3): 35-39 (in Chinese).
[9] 邹寒. 湿式过氧化氢催化氧化降解喹啉的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014,76. ZHOU H. Catalytic wet peroxide oxidation for the degradation of quinoline [D].Harbin: Journal of Harbin Institute of Technology, 2014, 76 (in Chinese). [10] 李静,李文英. 喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学,2015,36(4):1385-1391. LI J, LI Y W, Screening of a highly efficient quinoline-degrading strain and its enhanced biotreatment on coking waste water [J]. Environmental Science, 2015,36(4): 1385-1391 (in Chinese).
[11] CHANG L, ZHANG Y M, GAN L, et al. Internal loop photo-biodegradation reactor used for accelerated quinoline degradation and mineralization[J].Biodegradation, 2014, 25(4): 587-594. [12] AN T C, ZHANG W B, XIAO X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2/3): 233-242. [13] JING J Y, LI W Y, BOYD A, et al. Photocatalytic degradation of quinoline in aqueous TiO2 suspension[J]. Journal of Hazardous Materials, 2012, 237-238: 247-255. [14] GUIMARAES L R, GIROTO A, OLIVEIRA L C A, et al. Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process[J]. Applied Catalysis B: Environmental, 2009, 91(3/4): 581-586. [15] 方嘉声,于光认,陈晓春,等. 石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J]. 环境科学学报, 2015, 35(11): 3529-3537. FANG J S, YU G R, CHEN X C, et al. The influence factors on the fenton catalytic degradation of phenol using iron-loaded graphene modified molecular sieve catalyst [J]. Environmental Science, 2015, 35(11): 3529-3537 (in Chinese).
[16] 楚孙,李绍峰,WILLIAMS C,等. 钛盐光度法测定O3/H2O2高级氧化系统中的过氧化氢[J]. 化学工程师, 2011, 25(6):27-31. SUN C, LI S F, WILLIAMS C, et al. Titanium salt spectrophotometry for determination of hydrogen peroxide in O3/H2O2 advanced oxidation system [J]. Chemical Engineer, 2011, 25(6):27-31 (in Chinese).
[17] DVKKANCI M, GVNDVZ G, YILMAZ S, et al. Heterogeneous Fenton-like degradation of rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis[J]. Journal of Hazardous Materials, 2010, 181(1/3): 343-350. [18] 边丽匣. 含氮杂环化合物的电化学氧化与降解过程中废水的毒性变化[D]. 杭州:浙江工商大学, 2014, 101. BIAN J L. Eectrochemical oxidation of nitrogen-heterocyclic compounds and toxicity evolution of wastewater [D].Hangzhou: Zhejiang Gongshang University, 2014,101 (in Chinese). [19] 朱遂一. P25薄膜光催化降解水中喹啉及其中间产物的微生物抑制效应研究[D]. 长春:东北师范大学, 2011. 41. ZHU S Y. Photacatalytic debradation of quinoline aqueous solutions by P25 films and its by-products on the effect of microbial inhibition [D]. Changchun: Northeast Normal University, 2011, 41 (in Chinese).
[20] CRUZ N D L, GIMÉNEZB J, ESPLUGASB S, et al. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge[J]. Water Research, 2012, 46(6): 1947-1957. [21] VARIAVA M F, CHURCH T L, HARRIS A T, et al. Magnetically recoverable FexOy-MWNT Fenton's catalysts that show enhanced activity at neutral pH[J]. Applied Catalysis B: Environmental, 2012, 123-124: 200-207. [22] BAUTISTA P, MOHEDANO A F, CASAS Jose A, et al. Highly stable Fe/γ-Al2O3 catalyst for catalytic wet peroxide oxidation[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 497-504. [23] BAHNEMANN W, MUNEER M, HAQUE M.M, et al. Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions[J]. Catalysis Today, 2007, 124(3/4): 133-148. [24] 朱大章,孙冬梅,汪世龙,等. 喹啉水溶液真空紫外降解过程中的吸收光谱分析[J]. 光谱学与光谱分析, 2009,29(7): 1933-1936. ZHU D Z, SUN D M, HAN S L, et al. Absorption spectra analysis in the degradation process of quinoline in aqueous solution by VUV lights [J]. Spectroscopy and Spectral Analysis, 2009,29(7): 1933-1936 (in Chinese).
[25] XIAO D X, GUO Y G, LOU X Y, et al. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction[J]. Chemosphere, 2014, 103: 354-358. [26] 王维明. 非均相光芬顿深度处理焦化废水的研究[D]. 哈尔滨:哈尔滨工业大学, 2012,74. WANG W M. The research on advanced treatment of coking wastewater by heterogeneous photo-Fenton [D]. Harbin:Harbin Institute of Technology, 2012, 74 (in Chinese). [27] 聂晓李. 含吸电子基8-羟基喹啉金属配合物的合成及光学性能研究[D]. 广州:广东工业大学. 2014, 69. NIE X L. Synthesis,structures and properties of cluster-based coordination polymers incorporating cuprous halides and sulfur-containing mixed ligands [D]. Guangzhou:Gungdong University of Technology, 2014,69 (in Chinese). [28] SUN L J, YAO Y Y, WANG L, et al. Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst[J]. Chemical Engineering Journal, 2014, 240: 413-419. [29] POURAN S R, RAMAN A A A, WAN DAUD W M A. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions[J]. Journal of Cleaner Production, 2014, 64: 24-35. -

计量
- 文章访问数: 1357
- HTML全文浏览数: 1273
- PDF下载数: 425
- 施引文献: 0