模拟日光-非均相Fenton光催化降解喹啉

付军, 余艳鸽, 赵昱东, 王颖. 模拟日光-非均相Fenton光催化降解喹啉[J]. 环境化学, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
引用本文: 付军, 余艳鸽, 赵昱东, 王颖. 模拟日光-非均相Fenton光催化降解喹啉[J]. 环境化学, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
FU Jun, YU Yange, ZHAO Yudong, WANG Ying. Simulated sunlight- heterogeneous Fenton degradation of quinoline in wastewater[J]. Environmental Chemistry, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
Citation: FU Jun, YU Yange, ZHAO Yudong, WANG Ying. Simulated sunlight- heterogeneous Fenton degradation of quinoline in wastewater[J]. Environmental Chemistry, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706

模拟日光-非均相Fenton光催化降解喹啉

  • 基金项目:

    国家自然科学基金(51578070),国家国际科技合作专项项目(2013DFR90290)和国家地理空气与水保护基金(GEFC-08-16)资助

Simulated sunlight- heterogeneous Fenton degradation of quinoline in wastewater

  • Fund Project: Supported by National Natural Science Foundation of China (51578070), National International Scientific and Technological Cooperation Project (2013DFR90290) and National Geographic Air and Water Conservation Fund (GEFC-08-16)
  • 摘要: 以铝-分子筛(Al-MCM-41)为载体,采用加热回流法制备一种非均相芬顿催化剂还原氧化石墨烯-羟基铁/Al-MCM-41(rGO- FeOOH/Al-MCM-41).以喹啉模拟有机废水,考察该催化剂在不同氧化体系、不同H2O2投加量、不同催化剂投加量和不同水质因素(喹啉初始浓度和pH值)条件下对喹啉降解效能的影响,同时考察了催化剂的重复使用性.结果表明,喹啉的光芬顿降解过程符合准一级反应动力学,降解过程中溶液中的NO-3浓度先升高后下降,表明喹啉的吡啶环被打开.对比芬顿反应,模拟日光芬顿反应中光的引入促进羟基自由基的产生,使得喹啉去除率由45%提高到了99%;喹啉降解速率随着催化剂和 H2O2投加量的增加而升高,但投加量过多会消耗·OH 自由基从而抑制喹啉降解,在光芬顿体系中,该催化剂在pH=3.6—9.6的范围内都表现出了很高的活性;当喹啉初始浓度为20 mg·L-1,催化剂投加量为0.5 g·L-1,H2O2投加量为20 mmol·L-1,pH=6.3时,该催化剂对喹啉有很好的矿化效果(TOC去除率为3%).催化剂重复使用性能稳定,重复使用5次喹啉去除率仍高达99%,但TOC去除率略有降低,铁溶出率为0.48%以下.
  • 加载中
  • [1] XIA M, LONG M C, YANG Y D, et al. A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution[J]. Applied Catalysis B: Environmental, 2011, 110: 118-125.
    [2] QIU Z M, HE Y B, LIU X C, et al. Catalytic oxidation of the dye wastewater with hydrogen peroxide[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(9): 1013-1017.
    [3] 王维明,张冉,王树涛,等. 非均相光Fenton降解4氯酚的研究[J]. 安全与环境学报,2013, 13(1): 31-35.

    WANG W M, ZHANG R, WANG S T, et al. Degradation efficiency of 4-chlorophenol via heterogeneous photo-Fenton [J]. Journal of Safety and Environment, 2013, 13(1): 31-35 (in Chinese).

    [4] 杨泼,胡晓斌,陈泓哲,等. 树脂负载α-FeOOH异相光Fenton降解水中己烷雌酚[J]. 环境化学,2012, 31(8): 1131-1136.

    YANG P, HU X B, CHEN H Z, et al. Heterogeneous photo-Fenton degradation of hexestrol in water over α-FeOOH-loaded resin [J]. Environmental Chemistry, 2012, 31(8): 1131-1136 (in Chinese).

    [5] 赵彬,王向宇. 用于氧化反应的改性介孔分子筛MCM-41研究进展[J]. 工业催化,2013,21(1): 1-5.

    ZHAO B, WANG X Y. Advances in modification of mesoporous molecular sieve MCM-41 for oxidation reaction [J]. Industrial Catalysis, 2013,21(1): 1-5 (in Chinese).

    [6] 王云芳,步长娟,迟志明,等. Al-MCM-41介孔分子筛吸附喹啉的性能[J]. 化工学报,2015, 66(9):3597-3604.

    WANG Y F, BU C J, CHI Z M, et al. Adsorption of quinoline on zeolite Al-MCM-41 [J]. Journal of Chemical Industry and Engineering(China), 2015, 66(9): 3597-3604 (in Chinese).

    [7] HUANG C C, LI C and SHI G Q. Graphene based catalysts[J]. Energy & Environmental Science, 2012(5): 8848-8868.
    [8] 王小仛,黄霞,胡洪营. O3/UV降解喹啉过程中不同氧化剂的相对重要性[J]. 环境科学,2003,24(3):35-39.

    WANG X T, HUANG X, HU H Y. The relative importance of different oxidants in the degradation process of quinoline using O3/UV[J]. Environmental Science, 2003,24(3): 35-39 (in Chinese).

    [9] 邹寒. 湿式过氧化氢催化氧化降解喹啉的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014,76. ZHOU H. Catalytic wet peroxide oxidation for the degradation of quinoline [D].Harbin: Journal of Harbin Institute of Technology, 2014, 76 (in Chinese).
    [10] 李静,李文英. 喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学,2015,36(4):1385-1391.

    LI J, LI Y W, Screening of a highly efficient quinoline-degrading strain and its enhanced biotreatment on coking waste water [J]. Environmental Science, 2015,36(4): 1385-1391 (in Chinese).

    [11] CHANG L, ZHANG Y M, GAN L, et al. Internal loop photo-biodegradation reactor used for accelerated quinoline degradation and mineralization[J].Biodegradation, 2014, 25(4): 587-594.
    [12] AN T C, ZHANG W B, XIAO X M, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2/3): 233-242.
    [13] JING J Y, LI W Y, BOYD A, et al. Photocatalytic degradation of quinoline in aqueous TiO2 suspension[J]. Journal of Hazardous Materials, 2012, 237-238: 247-255.
    [14] GUIMARAES L R, GIROTO A, OLIVEIRA L C A, et al. Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process[J]. Applied Catalysis B: Environmental, 2009, 91(3/4): 581-586.
    [15] 方嘉声,于光认,陈晓春,等. 石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J]. 环境科学学报, 2015, 35(11): 3529-3537.

    FANG J S, YU G R, CHEN X C, et al. The influence factors on the fenton catalytic degradation of phenol using iron-loaded graphene modified molecular sieve catalyst [J]. Environmental Science, 2015, 35(11): 3529-3537 (in Chinese).

    [16] 楚孙,李绍峰,WILLIAMS C,等. 钛盐光度法测定O3/H2O2高级氧化系统中的过氧化氢[J]. 化学工程师, 2011, 25(6):27-31.

    SUN C, LI S F, WILLIAMS C, et al. Titanium salt spectrophotometry for determination of hydrogen peroxide in O3/H2O2 advanced oxidation system [J]. Chemical Engineer, 2011, 25(6):27-31 (in Chinese).

    [17] DVKKANCI M, GVNDVZ G, YILMAZ S, et al. Heterogeneous Fenton-like degradation of rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis[J]. Journal of Hazardous Materials, 2010, 181(1/3): 343-350.
    [18] 边丽匣. 含氮杂环化合物的电化学氧化与降解过程中废水的毒性变化[D]. 杭州:浙江工商大学, 2014, 101. BIAN J L. Eectrochemical oxidation of nitrogen-heterocyclic compounds and toxicity evolution of wastewater [D].Hangzhou: Zhejiang Gongshang University, 2014,101 (in Chinese).
    [19] 朱遂一. P25薄膜光催化降解水中喹啉及其中间产物的微生物抑制效应研究[D]. 长春:东北师范大学, 2011. 41. ZHU S Y. Photacatalytic debradation of quinoline aqueous solutions by P25 films and its by-products on the effect of microbial inhibition [D]. Changchun: Northeast Normal University, 2011, 41

    (in Chinese).

    [20] CRUZ N D L, GIMÉNEZB J, ESPLUGASB S, et al. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge[J]. Water Research, 2012, 46(6): 1947-1957.
    [21] VARIAVA M F, CHURCH T L, HARRIS A T, et al. Magnetically recoverable FexOy-MWNT Fenton's catalysts that show enhanced activity at neutral pH[J]. Applied Catalysis B: Environmental, 2012, 123-124: 200-207.
    [22] BAUTISTA P, MOHEDANO A F, CASAS Jose A, et al. Highly stable Fe/γ-Al2O3 catalyst for catalytic wet peroxide oxidation[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(4): 497-504.
    [23] BAHNEMANN W, MUNEER M, HAQUE M.M, et al. Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions[J]. Catalysis Today, 2007, 124(3/4): 133-148.
    [24] 朱大章,孙冬梅,汪世龙,等. 喹啉水溶液真空紫外降解过程中的吸收光谱分析[J]. 光谱学与光谱分析, 2009,29(7): 1933-1936.

    ZHU D Z, SUN D M, HAN S L, et al. Absorption spectra analysis in the degradation process of quinoline in aqueous solution by VUV lights [J]. Spectroscopy and Spectral Analysis, 2009,29(7): 1933-1936 (in Chinese).

    [25] XIAO D X, GUO Y G, LOU X Y, et al. Distinct effects of oxalate versus malonate on the iron redox chemistry: Implications for the photo-Fenton reaction[J]. Chemosphere, 2014, 103: 354-358.
    [26] 王维明. 非均相光芬顿深度处理焦化废水的研究[D]. 哈尔滨:哈尔滨工业大学, 2012,74. WANG W M. The research on advanced treatment of coking wastewater by heterogeneous photo-Fenton [D]. Harbin:Harbin Institute of Technology, 2012, 74 (in Chinese).
    [27] 聂晓李. 含吸电子基8-羟基喹啉金属配合物的合成及光学性能研究[D]. 广州:广东工业大学. 2014, 69. NIE X L. Synthesis,structures and properties of cluster-based coordination polymers incorporating cuprous halides and sulfur-containing mixed ligands [D]. Guangzhou:Gungdong University of Technology, 2014,69 (in Chinese).
    [28] SUN L J, YAO Y Y, WANG L, et al. Efficient removal of dyes using activated carbon fibers coupled with 8-hydroxyquinoline ferric as a reusable Fenton-like catalyst[J]. Chemical Engineering Journal, 2014, 240: 413-419.
    [29] POURAN S R, RAMAN A A A, WAN DAUD W M A. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions[J]. Journal of Cleaner Production, 2014, 64: 24-35.
  • 加载中
计量
  • 文章访问数:  1357
  • HTML全文浏览数:  1273
  • PDF下载数:  425
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-09-07
  • 刊出日期:  2017-05-15
付军, 余艳鸽, 赵昱东, 王颖. 模拟日光-非均相Fenton光催化降解喹啉[J]. 环境化学, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
引用本文: 付军, 余艳鸽, 赵昱东, 王颖. 模拟日光-非均相Fenton光催化降解喹啉[J]. 环境化学, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
FU Jun, YU Yange, ZHAO Yudong, WANG Ying. Simulated sunlight- heterogeneous Fenton degradation of quinoline in wastewater[J]. Environmental Chemistry, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706
Citation: FU Jun, YU Yange, ZHAO Yudong, WANG Ying. Simulated sunlight- heterogeneous Fenton degradation of quinoline in wastewater[J]. Environmental Chemistry, 2017, 36(5): 1072-1082. doi: 10.7524/j.issn.0254-6108.2017.05.2016090706

模拟日光-非均相Fenton光催化降解喹啉

  • 1.  北京师范大学, 环境学院水沙科学教育部重点实验室, 北京, 100875;
  • 2.  中日友好环境保护中心, 北京, 100029;
  • 3.  中电建水环境治理技术有限公司, 深圳, 518102
基金项目:

国家自然科学基金(51578070),国家国际科技合作专项项目(2013DFR90290)和国家地理空气与水保护基金(GEFC-08-16)资助

摘要: 以铝-分子筛(Al-MCM-41)为载体,采用加热回流法制备一种非均相芬顿催化剂还原氧化石墨烯-羟基铁/Al-MCM-41(rGO- FeOOH/Al-MCM-41).以喹啉模拟有机废水,考察该催化剂在不同氧化体系、不同H2O2投加量、不同催化剂投加量和不同水质因素(喹啉初始浓度和pH值)条件下对喹啉降解效能的影响,同时考察了催化剂的重复使用性.结果表明,喹啉的光芬顿降解过程符合准一级反应动力学,降解过程中溶液中的NO-3浓度先升高后下降,表明喹啉的吡啶环被打开.对比芬顿反应,模拟日光芬顿反应中光的引入促进羟基自由基的产生,使得喹啉去除率由45%提高到了99%;喹啉降解速率随着催化剂和 H2O2投加量的增加而升高,但投加量过多会消耗·OH 自由基从而抑制喹啉降解,在光芬顿体系中,该催化剂在pH=3.6—9.6的范围内都表现出了很高的活性;当喹啉初始浓度为20 mg·L-1,催化剂投加量为0.5 g·L-1,H2O2投加量为20 mmol·L-1,pH=6.3时,该催化剂对喹啉有很好的矿化效果(TOC去除率为3%).催化剂重复使用性能稳定,重复使用5次喹啉去除率仍高达99%,但TOC去除率略有降低,铁溶出率为0.48%以下.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回