拒马河的水化学、同位素特征及其指示意义
Hydrochemical and isotopic characteristics of the Juma River and their implications
-
摘要: 通过水文地球化学的方法来探究拒马河流域的河水与地下水之间的水力联系,从而为拒马河流域地下水的开采与管理提供一定的科学依据.因此,对太行山山前河流拒马河不同河段水样的水温、pH值、电导率、重碳酸根离子进行了现场测定,对水样中的K+、Na+、Ca2+、Mg2+、Cl-、SO42-、NO3-等阴、阳离子以及D和18O进行了实验室测定.7种常规离子的特征分析表明,拒马河不同河段水样水化学类型属于低矿化度的Ca-Mg-HCO3型水;δD和δ18O沿程变化特征表明拒马河河水在径流的过程中,δD和δ18O两者均沿程逐渐变化,并且都出现了富集的现象;氘过量参数沿程变化特征表明拒马河河水在径流的过程中发生"氧漂移"现象的原因主要是水/岩相互作用和蒸发作用,并且径流速度从整体来看比较缓慢;补给来源分析表明拒马河不同河段由大气降水补给,其化学成分是大气降水渗入地下经地下循环中各种水化学作用和蒸发作用影响的结果;补给高程的计算表明研究区内拒马河河段的补给高程在58—908 m之间,推断补给区很可能是北京西南部的中—低山区.Abstract: In order to provide scientific basis for the exploitation and management of groundwater of the Juma River basin the relationship between River and groundwater of the Juma River basin was explored through the hydrogeochemical method. Thus temperature pH,electric conductivity,and bicarbonate ion of water samples of the Taihang Mountain Piedmont Juma River were measured on site,and chemical and isotopic components in water such as K+,Na+,Ca2+,Mg2+,Cl-,SO42-,NO3- cation and anion etc.and D,18O were also tested in labs. The analysis results of the seven conventional ions indicated that the river water belonged to the low salinity of Ca-Mg-HCO3 type water. The evolution of δD and δ18O with disatnce indicated that δD and δ18O transformed gradually and the enrichment of δD and δ18O occured with distance when the river water flowed. The evolution excess deuterium with distance of indicated that the main reasons of oxygen isotope shift occurring in the process of the river runoff were water-rock interaction and evaporation, and the river runoff velocity was slow on the whole. Analysis of runoff-supplying sources indicated that the Juma River water was supplied by atmosphere precipitation, and the chemical composition of the water was the results of chemical water-rock interaction about atmospheric precipitation circular infiltration in the underground and evaporation. Calcula-tion of replenishment elevation indicated that replenishment elevation of Juma River in the study area ranged from 58 to 908 meters. It was deduced that the recharge area was likely to be middle-low mountainous area in southwestern Beijing.
-
Key words:
- Juma River /
- hydrogeochemical characteristics /
- isotopic characteristics /
- implications
-
-
[1] 于洋,王妍,刘玉晶.拒马河"12.7"暴雨洪水分析[J].河海水利,2012,5(3):22-24. YU Y,WANG Y,LIU Y J.Juma river"12.7"Storm flood analysis[J].Journal of Hehai Water Conservancy Project,2012,5(3):22-24 (in Chinese).
[2] 赵志杰,姜黎.拒马河"12.7"暴雨洪水对地下水埋深的影响[J].河海水利,2014,5(4):31-33. ZHAO Z J,JIANG L. Juma river "12.7"effect of storm flood on the depth of groundwater[J].Journal of Hehai Water Conservancy Project,2014,5(4):31-33 (in Chinese).
[3] DE VRIES J,SIMMER I.Groundwater recharge: An overview of processes and challenges[J].Hydrogeology Journal,2002,10(1):5-17. [4] BURNESS S.Water management in a mountain front recharge aquifer[J].Water Resources Research,2004,40(6),W06S21,doi:10.1029/2003WR002160. [5] GAUTHIER M J,CAMPORESE M,RIVARD C,et al.Amodeling study of heterogeneity and surface water-groundwater interactions in the Thomas Brook cat-chment,Annapolis Valley(Nova Scotia,Canada) [J].Hydrol Earth Syst Sc,2009,13(5):1583-1596. [6] PONCE V M,PANDY R P,KUMAR S. Groundwater recharge by channel infiltration in El Barbon basin,Baja California,Mexico[J].Journal of Hydrology,1999,214(7):1-7. [7] COVIN T P,MCGLYNN B L. Stream gains and losses across a mountain-to-valley transition:Impacts on watershed hydrology and stream water chemistry[J].Water Resources Research,2007,43(8),W10431,doi:10.1029/2006WR005544. [8] NISWONGER R G,PRUDIC D E,POHLL G,et al.Incorporating seepage losses into the unsteady streamflow equations for simulating intermittent flow alo-ng mountain front streams[J].Water Resources Research,2005,41(6),W06006,doi:10.1029/2004WR003677. [9] SMERDON B D,ALLEN D M,GRASBY S E,et al.An approach for predicting groundwater recharge in mountainous watersheds [J]. Journal of Hydrology,365(3-4):156-172. [10] 增瑞祥,王治,张进平,等.北京良乡地区地热资源及其开发利用现状[C].北京:地质出版社,2002:169-177. ZENG R X,WANG Z,ZHANG J P,et al.Geothermal resources and exploitation in the area of Liangxiang,Beijing[C].Beijing:Geological Publishing House,2002:169 -177(in Chinese).
[11] 增瑞祥,柳志国,王丹英,等.北京市房山区良乡地区地热资源综合评价报告[R].北京:北京市地质工程勘察院,2000. ZENG R X,LIU Z G,WANG D Y,et al.Comprehensive evaluating of geothermal resources in the Liangxiang district of Beijing[R].Beijing:Beijing Institute of Geological Engineering,2000(in Chinese). [12] 吕金波,车用太,王继明等.京北地区热水水文地球化学特征与地热系统的成因模式[J].地震地质,2006,28(3):419-429. LU J B,CHE Y T,WANG J M,et al.Hydrogeochemical characteristics of thermal water and genetic model of geothermal system in north Beijing[J].Seimology and Geology,2006,28(3):419-429(in Chinese).
[13] 刘宗明,吴梦源,刘颖超.特定地热地质条件对地热资源富集研究实例——以北京市昌平区郑各庄地区为例[J].城市地质,2014,9(增刊):30-34. LIU Z M,WU M Y,LIU Y C.Case studies on the specific geothermal condition in the geothermal resources enrichment area—Take Zhenggezhuang region in the Changping District of Beijing as an example[J].Urban Geology,2014 ,9(Z1):30-34 (in Chinese).
[14] [15] 辛宝东.北京市房山区岩溶地下水水文地球化学特征[J]. 水文地质工程地质,2005,3(2):74-75. XING B D. Karst groundwater hydrogeochemical characteristics in Fangshan of Beijing[J]. Hydrogeology and Engineering geology,2005,3(2):74-75 (in Chinese).
[16] 翟远征,王金生,滕彦国,等. 北京市不同水体中D 和18O 组成的变化及其区域水循环指示意义[J]. 资源科学,2011,33(1):92-97. ZHAI Y Z,WANG J S,TENG Y G,et al. Different water component change of D and 18O and regional water cycle implications in Beijing[J]. Resource Science, 2011,33(1):92-97 (in Chinese).
[17] 刘颖超,刘凯,孙颖,等.良乡地热田地热水化学特征及同位素分析[J].南水北调与水利科技,2015,13(5):963-994. LIU Y C,LIU K,SUN Y,et al.Hydrochemical characteristics and isotope analysis of geothermal water in Liangxiang geothermal field [J].South-to-North Water Transfers and Water Science & Technology,2015,13(5):963-994 (in Chinese).
[18] 张保建,徐军祥,马振民,等.运用H、O同位素资料分析地下热水的补给来源-以鲁西北阳谷——齐河凸起为例[J].地质通报,2010,26(4):603-609. ZHANG B J,XU J X,MA Z M,et al.Analysis on groundwater supply sources using hydrogen andoxygen isotope data-a case study of Yanggu-Qihe salient northwestern Shandong China[J].Geological Bulletin of China,2010,26(4):603-609 (in Chinese).
[19] 潘小平,王治.小汤山地热田热水地球化学特征[J].北京地质,1999,8(4):7-15. PAN X P,WANG Z.The chracteristics of the thermal water in Xiaotangshan geothermal field[J].Beijing Geology,1999,8(4):7-15 (in Chinese).
[20] 林柞顶.同位素技术在水文水资源领域的应用[J].水利水电技术,2003,34(7):6-8. LIN Z D.Application of isotope technology in the field of hydrology and water resources [J].Water resources and hydropower engineering,2003,34(7):6-8 (in Chinese).
[21] GIBSON J J,PROWSE T D.Stable isotope in river ice:Identifying primary over-winter streamflow sigals and their hyrological signifycance[J].Hydrool-Gical Processes,2002,16(2):873-890. [22] LAMBS L,BALAKRISHMA K,BRUNET F,et al.Oxygen and hydrogen isotopic composition of major Indian rivers:A first global assessment[J].Hydrological Processes,2005,19(6):3345-3355. [23] GIBSON J J,EDWARDS T W,BIRKS S J, et al.Progress in isotope tracer hydrology in Canada[J].Hydrological Processes,2005,19(3):303-327. [24] KENDAL C,COPLEN T B.Distribution of oxygen-18 and deuterium in river waters across the United States[J].Hydrological Processes,2001,15(5):1363-1393. [25] 刘忠方,田立德,姚檀栋,等.雅鲁藏布江流域河水中氢氧稳定同位素的时空变化[J].冰川冻土,2008,30(1):20-27. LIU Z F,TIAN L D,YAO T D,et al. Temporal and spatial variation of water stable isotopes in the Yarlung Zangbo River[J].Journal of Glaciology and Geocryology,2008,30(1):20-27 (in Chinese).
[26] DUTTON A,WILKINSON B H,WELKER J M,et al.Spatil distribution and seasonal vaviation in 18O/16O of modern precipitation and river water across the continent USA[J].Hydrological Processes,2005,19(2):4121-4146. [27] KABEYA N,KUOTA T,SHIMIZU A, et al.Isotopic investigation of river water mixing around the confluence of the Tonle Sap and Mek on River[J].Hydrological Processes,2008,22(5):1351-1358. [28] EDMUNDS W M. Geochemistry's vital contribution to solving water resource problems[J]. Applied Geochemistry,2009,24(2): 1058-1073. [29] 张人权,梁杏,靳孟贵,等.水文地质学基础[M].第六版.北京:地质出版社,2011. ZHANG R Q,LIANG X,JING M G et al.General Hydrogeology[M].the sixth edition.Beijing:Geological Publishing House,2011 (in Chinese). [30] 杨丽芝,张光辉,胡乃松等.利用环境同位素信息识别鲁北平原地下水的补给特征[J]. 地质通报,2009,28(4):515-521. YANG L Z,ZHANG G Y,HU N S,et al.The supply characteristics of groundwater environmental isotope information identifying in the northern plains of Shandong[J].Geological Bulletin of China,2009,28(4):515-521 (in Chinese).
[31] 钱会,马致远,李培月.水文地球化学[M].第二版.北京:地质出版社,2012. QIAN H,MA Z Y,LI P Y.Hydrogeochemistry[M].the second edition.Beijing:Geological Publishing House,2012 (in Chinese). [32] CRAIG H.Isotopic varations in meteoric waters[J].Science,1961,133(4):1702-1703. [33] DANSGAARD W.Stable isotopic in precipitation [J].Tellus,1964,17(4):436-468. [34] 尹观,倪师军,张其春.氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J].成都理工学院学报,2001,28(3):512-254. YIN G,NI S J,ZHANG Q C.Deuterium excess parameter and geohydrology significance—Taking the geohydrology researches in Jiuzaigou and Yele,Sichuan for example[J].Journal of Chengdu University of Technology,2001,28(3):512-254 (in Chinese).
[35] 郑淑慧,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1982,13(2):801-806. ZHENG S H,HOU F G,NI B L,et al.Study on stable oxygen and hydrogen isotopes in atmospheric precipitation in China[J]. Science Bulletin,1982,13(2):801-806 (in Chinese).
[36] HAO Y,YU X X,DENG W P,et al.The variations of hydrogen and oxygen compositions and moisture sources in the precipitation in western mountain areas of Beijing[J]. Journal of Natural Resources,2016,31(7):1211-1221. [37] ZHAI Y Z,WANG J S,ZHANG Y,et al. Hydrochemical and isotopic investigation of atmospheric Precipitati-on in Beijing,China[J].Science of the Total Environment,2013,456(2):202-211. [38] 翟远征,王金生,藤彦国等.北京泉水的水化学、同位素特征及其指示作用[J].地质通报,2011,30(9):1442-1449. ZHAI Y Z,WANG J S,TENG Y G,et al. Hydrochemical and isotopic characteristics of springs in Beijing and their implications[J].Geological Bulletin of China,2011,30(9):1442-1449 (in Chinese).
-

计量
- 文章访问数: 1319
- HTML全文浏览数: 1267
- PDF下载数: 384
- 施引文献: 0