核-壳结构N(x)-TiO2@C的制备和表面TiO2晶相调控及可见光催化降解孔雀石绿研究
Fabrication of core-shell structure N doped TiO2@C: Crystal phase regulation of surface TiO2 and visible light photodegradation of malachite green
-
摘要: 以C球为核,钛酸四丁酯和四氯化钛为钛源,不同含量尿素为氮源,通过水热法将不同N掺杂量的TiO2包裹在C球表面.通过控制焙烧条件,调控包在C球表面的TiO2的晶型.X射线衍射(XRD)表明,随着焙烧温度的提高,可调控TiO2的晶型由板钛矿/锐钛矿混晶到锐钛矿/金红石混晶最后得到单一金红石相TiO2;X射线光电子能谱(XPS)表明,N掺杂进入了TiO2的晶格内.可见光催化降解孔雀石绿研究表明,制备过程加入1 g尿素,煅烧温度为550 ℃的样品N(1)-TiO2@C-550 ℃,其结构为锐钛矿/金红石混晶型,可见光催化效果最好,2 h催化效率达到75%,相比P25提高了11倍.对其可见光催化降解孔雀石绿过程中活性氧物种的捕获可知,·O2-和·OH参与了反应,其中·OH起在光催化过程中占主要作用.Abstract: By using C ball as core,tetrabutyl titanium and titamium tetrachloride titanium as sources, urea as N source,core-shell structure N doped TiO2@C was fabricated. By controlling the calcination temperature,the crystalinity of TiO2 was regulated. X-ray diffraction (XRD) demonstrates that, with the increase of calcination temperature,TiO2 was tuned from brookite/anatase to anatase/rutile and at last to rutile crystal phase. X-ray photoelectron spectrometer(XPS)demonstrates that N was doped into the lattice of TiO2. Visible light photodegradation experimentally of malachite green showed that when using 1 g urea and 550 ℃ calcination temperature,the prepared N(1)-TiO2@C had the highest catalytic efficiency of 75%,which is 11 times that of P25 under the same condition. The capture of reactive oxygen species demonstrates that hydroxyl (·OH) and superoxide radical (·O2-) were mainly involved in the photodegradation reaction and ·OH played the most important role.
-
Key words:
- C ball /
- N doped /
- shell-core /
- polymorph /
- visible light photocatalytic /
- active species /
- malachite green
-
-
[1] PENG X, FU J, ZhANG X, et al. Carbon-doped TiO2 nanotube array platform for visible photocatalysis[J]. Nanoscience and Nanotechnology Letters. 2013, 5(12): 1251-1257. [2] WU H, SUN L, ZhOU H, et al. Novel TiO2-Pt@SiO2 nanocomposites with high photocatalytic activity[J]. Nanoscale. 2012, 4(10): 3242. [3] GIANNAKAS A E, ANTONOPOULOU M, DAIKOPOULOS C, et al. Characterization and catalytic performance of B-doped, B-N co-doped and B-N-F tri-doped TiO2 towards simultaneous Cr (VI) reduction and benzoic acid oxidation[J]. Applied Catalysis B: Environmental. 2016, 184: 44-54. [4] SAMBANDAM B, SURENJAN A, PHILIP L, et al. Rapid synthesis of C-TiO2: Tuning the shape from spherical to rice grain morphology for visible light photocatalytic application[J]. Acs Sustainable Chemistry & Engineering. 2015, 3(7): 261-262. [5] 周珺, 郑玉婴. 不同形貌N-TiO2的水热合成及其光催化性能研究[J]. 功能材料. 2015, 46(7): 7148-7152. ZhOU G, ZhENG Y Y. Hydrothermal synthesis and photocatalytic properties of N-TiO2 with different morphologies[J]. Functional Materials. 2015, 46 (7): 7148-7152 (in Chinese).
[6] 杜娴, 杜慧玲. TiO2的混晶效应与光催化性能综合实验研究[J]. 实验技术与管理. 2016, (01): 58-60. DU X, DU H L. Experimental study on the mixed crystal effect and photocatalytic properties of TiO2 [7] TANG Y, FU S, ZhAO K, et al. Synthesis of TiO2 nanofibers with adjustable anatase/rutile ratio from Ti sol and rutile nanoparticles for the degradation of pollutants in wastewater[J]. Ceramics International. 2015, 41(10): 13285-13293. [8] RICCI P C, CARBONARO C M, STAGI L, et al. Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light[J]. The Journal of Physical Chemistry C. 2013, 117(15): 7850-7857. [9] ZhU Z, Li X, ZhAO Q, et al. FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO2 nanoballs nynthesized by hydrothermal treatment in alkaline solution[J]. Materials Research Bulletin. 2010, 45(12): 1889-1893. [10] TRANG N T H, ALI Z, KANG D J. Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries[J]. ACS Applied Materials & Interfaces. 2015, 7(6): 3676-3683. [11] MACAK J M, ZLAMAL M, KRYSA J, et al. Self-organized TiO2 nanotube layers as highly efficient photocatalysts[J]. Small. 2007, 3(2): 300-304. [12] OBUYA E A, JOSHI P C, GRAY T A, et al. Application of Pt-TiO2 nanofibers in photosensitized degradation of rhodamine B[J]. International Journal of Chemistry. 2013, 6(1): 1. [13] KENNEDY J, JONES W, MORGAN D J, et al. Photocatalytic hydrogen production by reforming of methanol using Au/TiO2, Ag/TiO2 and Au-Ag/TiO2 catalysts[J]. Catalysis Structure & Reactivity. 2014, 1(1): 35-43. [14] ZhAO C, KRALL A, ZhAO H, et al. Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction[J]. International Journal of Hydrogen Energy. 2012, 37(13): 9967-9976. [15] LOU X W D, ARCHER L A, YANG Z. Hollow micro-/nanostructures: synthesis and applications[J]. Advanced Materials. 2008, 20(21): 3987-4019. [16] ZhUANG Y, SUN J, GUAN M. Template free preparation of TiO2/C core-shell hollow sphere for high performance photocatalysis[J]. Journal of Alloys and Compounds. 2016, 662: 84-88. [17] LI Y, ZHOU P, DAI Z, et al. A facile synthesis of Pd Co bimetallic hollow nanospheres and their application to sonogashira reaction in aqueous media[J]. New Journal of Chemistry. 2006, 30(6): 832. [18] NISHIMURA S, ABRAMS N, LEWIS B A, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals[J]. Journal of the American Chemical Society. 2003, 125(20): 6306-6310. [19] LO H, GOPAL N O, SHEU S, et al. Electron paramagnetic resonance investigation of charge transfer in TiO2 (B)/anatase and N-TiO2(B)/anatase mixed-phase nanowires: the relative valence and conduction B and edges in the two phases[J]. The Journal of Physical Chemistry C. 2014, 118(5): 2877-2884. [20] 和娇娇, 杜慧玲, 杜娴, 等. 镧掺杂混晶结构TiO2纳米粉体的制备及其光催化性能[J]. 人工晶体学报. 2014, (06): 1529-1534. HE J J, DU H L, DU X, et al. Preparation and photocatalytic properties of lanthanum doped mixed crystal structure TiO2 [21] KAPLAN R, ERJAVEC B, DRAZIC G, et al. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants[J]. Applied Catalysis B: Environmental. 2016, 181: 465-474. [22] SUN X, LI Y. Hollow carbonaceous capsules from glucose solution[J]. Journal of Colloid and Interface Science. 2005, 291(1): 7-12. [23] ZhANG H, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2[J]. The Journal of Physical Chemistry B. 2000, 104(15): 3481-3487. [24] XIANG Q, YU J, WANG W, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity[J]. Chemical Communications. 2011, 47(24): 6906. [25] HANAOR D A H, SORRELL C C. Review of the anatase to rutile phase transformation[J]. Journal of Materials science. 2011, 46(4): 855-874. [26] BARNARD A S, CURTISS L A. Prediction of TiO2 Nanoparticle phase and shape transitions controlled by surface chemistry[J]. Nano Letters. 2005, 5(7): 1261-1266. [27] SATHISH M, VISWANATHAN B, VISWANATH R P, et al. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst[J]. Chemistry of Materials. 2005, 17(25): 6349-6353. [28] VISWANATHAN B. Photocatalytic processes-selection criteria for the choice of materials[J]. Bull Catalytsis Society India, 2003, 2: 71. [29] TANG L, WANG Y, LI Y, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet Films[J]. Advanced Functional Materials. 2009, 19(17): 2782-2789. [30] SAHU S, BEHERA B, MAITI T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chemical Communications. 2012, 48(70): 8835. [31] 刘振宇, 郑经堂, 王茂章, 等. 多孔炭的纳米结构及其解析[J]. 化学进展. 2001, 13(1): 10-18. LIU Z Y, ZHENG J T, WANG M Z, et al. Microstructure and analytical chemistry of porous carbon[J]. Chemical Progress, 2001, 13(1): 10-18 (in Chinese).
-

计量
- 文章访问数: 1069
- HTML全文浏览数: 1004
- PDF下载数: 428
- 施引文献: 0