添加奶粉对土壤中铬、镍、锰、铜生物可给性的影响
The effect of milk powder on the bioaccessibility of Cr,Ni,Mn, and Cu in contaminated soils
-
摘要: 为了探究不同成分的奶粉对土壤中Cr、Ni、Mn、Cu生物可给性的影响,本文通过in vitro实验研究了添加全脂或脱脂奶粉后,胃肠阶段土壤中Cr、Ni、Mn、Cu的生物可给性的变化.结果表明,胃阶段,土壤中Cr、Ni、Mn、Cu的生物可给性分别为3.9%—46.2%、4.5%—64.0%、21.2%—72.5%、4.5%—69.5%;添加奶粉后,4种金属的生物可给性均有升高,是未加奶粉的1.1—1.5倍、1.3—2.2倍、1.1—2.1倍、1.0—3.6倍(全脂奶粉)和1.1—1.4倍、1.4—2.4倍、1.2—2.5倍、1.0—4.2倍(脱脂奶粉).小肠阶段,土壤中Cr、Ni、Cu的生物可给性有一定上升,但Mn的生物可给性相比胃阶段降低了;奶粉的添加使Cr、Ni、Mn、Cu等4种金属的溶出量增加,分别是未添加的1.2—1.3倍、1.3—2.3倍、2.0—4.5倍、1.0—1.5倍(全脂奶粉)和1.1—1.5倍、1.6—2.5倍、2.5—6.9倍、1.2—1.8倍(脱脂奶粉),其中Ni、Mn的生物可给性增加显著,且Ni、Mn的生物可给性的增加率高于胃阶段.由此可见,奶粉的添加,尤其是脱脂奶粉,促进了土壤中Cr、Ni、Mn、Cu的溶出释放,可能增大了其对人体的健康风险.Abstract: In vitro experiment was used to determine the bioaccessibility of Cr, Ni, Mn, Cu with different composition of milk powder in the gastric and small intestinal phases. The results showed that in the gastric phase, bioaccessibility of Cr, Ni, Mn, Cu were 3.9%—46.2%, 4.5%—64.0%, 21.2%—72.5%, 4.5%—69.5% for five soils. Bioaccessibility of Cr, Ni, Mn, Cu have rised with addition of milk, is not milk powder 1.1—1.5, 1.3—2.2, 1.1—2.1, 1.0—3.6 times (whole milk powder) and 1.1—1.4, 1.4—2.4, 1.2—2.5, 1.0—4.2 times (skim milk powder). In the small intestinal phase, bioaccessibility of Cr, Ni, Cu improved in soils, but Mn bioaccessibility reduced compared with that in the gastric phase; Milk powder to add increase the dissolubility of Cr,Ni,Mn,Cu, is not milk powder 1.2—1.3, 1.3—2.3, 2.0—4.5, 1.0—1.5 times (whole milk powder) and 1.1—1.4, 1.6—2.5, 2.5—6.9, 1.2—1.8 times (skim milk powder). Bioaccessibility of Ni, Mn significantly increased and increase rate of Ni,Mn bioaccessibility is higher than the stomach. Therefore, milk powder addition, especially skim milk powder can increase the bioaccessibility of Cr, Ni, Mn, Cu in soils, may increase the risk to the health of human body.
-
Key words:
- soil /
- bioaccessibility /
- metal /
- milk powder /
- UBM method
-
-
[1] ABRANHAMS P W. Soils: Their implications to human health [J]. Science of the Total Environment, 2002, 291(1/3):1-32. [2] LI J, HOU H, WEI Y, et al. Bioaccessibility and health risk assessment of heavy metals in agricultural soil from Zhuzhou, China [J]. Research of Environmental Sciences, 2013, 26(10):1139-1146. [3] RUBY M V, DAVIS A, SCHOOF R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test [J]. Environmental Science & Technology, 1996, 30(2):422-430. [4] 崔岩山, 陈晓晨, 付瑾. 污染土壤中铅砷的生物可给性研究进展 [J]. 生态环境学报, 2010, 19(2):480-486. CUI Y S, CHEN X C, FU J. Progress in study of bioaccessibility of lead and arsenic in contaminated soils [J]. Ecology and Environmental Sciences, 2010, 19(2):480-486(in Chinese).
[5] KIM J Y, KIM K W, LEE J U, et al. Assessment of As and heavy metal contamination in the vicinity of duckum Au-Ag mine, Korea [J]. Environmental Geochemistry and Health, 2002, 24(3):215-227. [6] GIROUARD E, ZAGURY G J. Arsenic bioaccessibility in CCA-contaminated soils: Influence of soil properties, arsenic fractionation, and particle-size fraction [J]. Science of the Total Environment, 2009, 407(8):2576-2585. [7] 尹乃毅, 都慧丽, 张震南,等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响 [J]. 环境科学, 2016, 37(6):2353-2358. YIN N Y, DU H L, ZHANG Z N, et al. Effects of human gut microbiota on bioaccessibility of soil Cd,Cr and Ni using SHIME model [J]. Environmental Science, 2016, 37(6):2353-2358(in Chinese).
[8] ALAVA P, TACK F, DU L G, et al. HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota [J]. Biomedical Chromatography, 2011, 26(4):524-533. [9] ZHANG Y, PIGNATELLO J J, TAO S, et al. Bioaccessibility of PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink: Effect of food ingestion [J]. Environmental Science & Technology, 2015, 49(24):14641-14648. [10] YU S, DU J, LUO T, et al. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method [J]. Journal of Hazardous Materials, 2012, 20(9):250-255. [11] SUHANA N, SUTYARSO, MOELOEK N, et al. The effects of feeding an Asian or Western diet on sperm numbers, sperm quality and serum hormone levels in cynomolgus monkeys (Macaca fascicularis) injected with testosterone enanthate (TE) plus depot medroxyprogesterone acetate (DMPA) [J]. International Journal of Andrology, 1999, 22(2):102-112. [12] ALAVA P, DU L G, TACK F, et al. Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon [J]. Chemosphere, 2015,119:757-762. [13] MOREDA J, ALONSO E, ROMARIS V, et al. Assessment of the bioavailability of toxic and non-toxic arsenic species in seafood samples [J]. Food Chemistry, 2012, 130(3):552-560. [14] YAGER J W, GREENE T, SCHOOF R A. Arsenic relative bioavailability from diet and airborne exposures: Implications for risk assessment [J]. Science of the Total Environment, 2015, 536(5):368-381. [15] 尹乃毅, 崔岩山, 张震南,等. 土壤中金属的生物可给性及其动态变化的研究 [J]. 生态环境学报, 2014, 23(2): 317-325. YIN N Y, CUI Y S, ZHANG Z N, et al. Bioaccessibility and dynamic dissolution of metals in contaminated soils [J]. Ecology and Environmental Sciences, 2014, 23(2): 317-325(in Chinese).
[16] DENYS S, CABOCHE J, TACK K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils [J]. Environmental Science & Technology, 2012, 46(11): 6252-6260. [17] OOMEN A G, HACK A, MINEKUS M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants [J]. Environmental Science & Technology, 2002, 36(15):3326-3334. [18] MARSCHNER B, WELGE P, HACK A, et al. Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction [J]. Environmental Science & Technology, 2006, 40(8):2812-2818. [19] SCHORDER J L, BASTA N T, CASTEEL S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimaterelative bioavailable lead in contaminated soils [J]. Journal of Environmental Quality, 2004, 33(2):513-521. [20] LAIRD B D, YEUNG J, PEK D, et al. Nutritional status and gastrointestinal microbes affect arsenic bioaccessibility from soils andmine tailings in the simulator of the human intestinal microbial ecosystem [J]. Environmental Science & Technology, 2009, 43(22):8652-8657. [21] MOREDA-PINEIRO J, MOREDA-PINEIRO A, ROMARIS-HORTAS V, et al. Trace metals in marine foodstuff: Bioavailability estimation and effect of major food constituents [J]. Food Chemistry, 2012, 134(1):339-345. [22] INTAWONGSE M, DEAN J R. In vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples [J]. Trac-Trends in Analytical Chemistry, 2006, 25(9):876-886. [23] YU H, LIU S, LI M, et al. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity [J]. Environmental Geochemistry and Health, 2016, 38(2):339-351. [24] 王定坤,冯志强,文灿,等. 全脂奶粉中蛋白质和氨基酸组成的比较研究 [J]. 现代食品科技, 2012, 162(12):1803-1805. WANG D K, FENG Z Q, WEN C, et al. Comparative studies of protein and amino acid composition in the whole milk powder [J]. Modern Food Science and Technology, 2012, 162(12):1803-1805(in Chinese).
[25] 崔磊. 脱脂奶粉中小肽含量与功能活性研究 [D]. 上海:上海交通大学, 2012. CUI L. Content and bioactivities of micropeptides in skim milk powder [D]. Shanghai: Shanghai Jiao Tong University, 2012(in Chinese). [26] 王金胜, 吕淑霞.基础生物化学 [M]. 北京:中国农业出版社, 2014:20-35. WANG J S, LYU S X. Basic Biochemistry [M]. Beijing: The Chinese Press, 2014:20 -35(in Chinese).
[27] 余晓倩, 何炜, 孙长虹. 鼠李糖脂在污染场地修复中的应用研究进展[J]. 环境工程, 2014,12:157-162. YU X Q, HE W, SUN C H. Recent advances in the application of rhamnolipids in contaminated site remediation [J]. Environmental Engineering, 2014 ,12:157-162(in Chinese).
[28] 尹乃毅, 罗飞, 张震南,等. 土壤中铜的生物可给性及其对人体的健康风险评价[J]. 生态毒理学报, 2014, 9(4): 670-677. YIN N Y, LUO F, ZHANG Z N, et al. Bioaccessibility of soil copper and its health risk assessment [J]. Asian Journal of Ecotoxiology, 2014, 9(4): 670-677(in Chinese).
-

计量
- 文章访问数: 1469
- HTML全文浏览数: 1368
- PDF下载数: 339
- 施引文献: 0