13种新型极性苯酚类氯/溴代消毒副产物的生成机理

王莹, 陈泽智, 李爱民, 周庆, 李欢, 潘旸. 13种新型极性苯酚类氯/溴代消毒副产物的生成机理[J]. 环境化学, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501
引用本文: 王莹, 陈泽智, 李爱民, 周庆, 李欢, 潘旸. 13种新型极性苯酚类氯/溴代消毒副产物的生成机理[J]. 环境化学, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501
WANG Ying, CHEN Zezhi, LI Aimin, ZHOU Qing, LI Huan, PAN Yang. Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Environmental Chemistry, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501
Citation: WANG Ying, CHEN Zezhi, LI Aimin, ZHOU Qing, LI Huan, PAN Yang. Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Environmental Chemistry, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501

13种新型极性苯酚类氯/溴代消毒副产物的生成机理

  • 基金项目:

    国家自然科学基金(51438008,51408296)和江苏省自然科学基金(BK20140607)资助.

Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water

  • Fund Project: Supported by the National Natural Science Foundation of China (51438008,51408296) and Natural Science Foundation of Jiangsu Province (BK20140607).
  • 摘要: 近年来,基于超高效液相色谱/电喷雾电离三重四极杆质谱(UPLC/ESI-tqMS)的多反应监测扫描(MRM)、前体离子扫描和子离子扫描技术,研究人员在饮用水中发现了13种新型极性苯酚类氯/溴代消毒副产物(Cl-/Br-DBPs).它们不仅具有比脂肪族消毒副产物更高的细胞毒性、生长发育毒性和生长抑制作用,而且降解后会产生三卤甲烷和卤代乙酸类消毒副产物,因此受到了人们的极大关注.为探究13种新型极性苯酚类Cl-/Br-DBPs在饮用水消毒过程中的生成机理以及更好地控制其生成,本研究以没食子酸为前驱物,在实验室模拟氯和氯胺的消毒过程,通过UPLC/ESI-tqMS MRM方法分析没食子酸和氯/氯胺消毒反应的终产物及部分中间产物,并推测了这13种Cl-/Br-DBPs在氯消毒过程中的反应路径.结果表明,模拟和实际饮用水水源水中均存在没食子酸,且经氯/氯胺消毒后的没食子酸反应液中生成了10种新型极性苯酚类Cl-/Br-DBPs,证明没食子酸是生成13种新型极性苯酚类Cl-/Br-DBPs的前驱物之一.
  • 加载中
  • [1] HELLER-GROSSMAN L, IDIN A, RELIS B L, et al. Formation of cyanogen bromide and other volatile DBPs in the disinfection of bromide-rich lake water[J]. Environmental Science & Technology, 1999, 33(6):932-937.
    [2] MAGAZINOVIC R S, NICHOLSO B C, MULCAHY D E, et al. Bromide levels in natural waters:Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment[J]. Chemosphere, 2004, 57(4):329-335.
    [3] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2008, 42(22):8330-8338.
    [4] RICHARDSON S D, POSTIGO C. Drinking water disinfection byproducts//Emerging organic contaminants and human health[M]. Berlin, Germany:Springer-Verlag, 2011:93-138.
    [5] XIE Y F. Disinfection byproducts in drinking water:Formation, analysis and control[M]. Boca Raton, FL:Lewis Publishers, 2004.
    [6] ZHAI H Y, ZHANG X R, LIU J Q, et al. Formation of brominated disinfection byproducts during chloramination of drinking water:New polar species and overall kinetics[J]. Environmental Science & Technology, 2014, 48(5):2579-2588.
    [7] KRISTIANA I, GALLARD H, JOLL C, et al. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates[J]. Water Research, 2009, 43(17):4177-4186.
    [8] ROOK J J. Formation of haloforms during chlorination of natural waters[J]. Water Treatment and Examination, 1974, 23(2):234-243.
    [9] RICHARDSON S D. Disinfection by-products:Formation and occurrence in drinking water//Encyclopedia of Environmental Health[M]. Burlington:Elsevier, 2011.
    [10] ZHANG X R, TALLEY J W, BOGGESS B, et al. An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts[J]. Water Research, 2004, 38(18):3920-3930.
    [11] ZHANG X R, TALLEY J W, BOGGESS B, et al. Fast selective detection of polar brominated disinfection byproducts in drinking water using precursor ion scans[J]. Environmental Science & Technology, 2008, 42(17):6598-6603.
    [12] ZHAI H Y, ZHANG X R. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination[J]. Environmental Science & Technology, 2011, 45(6):2194-2201.
    [13] PAN Y, ZHANG X R. Four groups of new aromatic halogenated disinfection byproducts:Effect of bromide concentration on their formation and speciation in chlorinated drinking water[J]. Environmental Science & Technology,2013, 47(3):1265-1273.
    [14] YANG M T, ZHANG X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii[J]. Environmental Science & Technology, 2013, 47(19):10868-10876.
    [15] WANG W, QIAN Y C, LI J H, et al. Analytical and toxicity characterization of halo-hydroxyl-benzoquinones as stable halobenzoquinone disinfection byproducts in treated water[J]. Analytical Chemistry, 2014, 86(10):4982-4988.
    [16] LIU J Q, ZHANG X R. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga:Halophenolic DBPs are generally more toxic than haloaliphatic ones[J]. Water Research, 2014, 65:64-72.
    [17] BOND T, HUANG J, TEMPLETON M R. Occurrence and control of nitrogenous disinfection by-products in drinking water-a review[J]. Water Research, 2011, 45:4341-4354.
    [18] ROCCARO P, VAGLIASINDI F G, KORSHIN G V. Relationships between trihalomethanes, haloacetic acids, and haloacetonitriles formed by the chlorination of raw treated, and fractionated surface waters[J]. Journal of Water Supply:Research and Technology, 2014, 63:21-30.
    [19] CHU W H, LI C J, GAO N Y, et al. Terminating preozonation prior to biological activated carbon filtration results in increased formation of nitrogenous disinfection by-products upon subsequent chlorination[J]. Chemosphere, 2015, 121:33-38.
    [20] YANG Y L, YU H K, YANG X L. Characteristics of disinfection by-products precursors removal from micro-polluted water by constructed wetlands[J]. Ecological Engineering, 2016, 93:262-268.
    [21] 付顺, 孙越. 碘代消毒副产物在净水工艺中的生成机制与控制措施[J].环境化学, 2016, 35(6):1153-1163.

    FU S, SUN Y. Formation mechanism and control measures of iodinated disinfection by-products in drinking water process[J]. Environmental Chemistry, 2016, 35(6):1153-1163(in Chinese).

    [22] CHU W H, LI X, BOND T, et al. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water:Reduction efficiency and integrated toxicity risk[J]. Water Research, 2016, 107:141-150.
    [23] 张永吉, 南军, 刘前军, 等. 铁盐和铝盐混凝剂对消毒副产物的控制作用及机制研究[J].环境化学, 2004, 23(4):420-423.

    ZHANG Y J, NAN J, LIU Q J, et al. The efficiency and mechanism of controlling chloroform formation by ferric and aluminium[J]. Environmental Chemistry, 2004, 23(4):420-423(in Chinese).

    [24] ZUCCA P, ROSA A, TUBEROSO C, et al. Evaluation of antioxidant potential of "Maltese mushroom" (Cynomorium coccineum) by means of multiple chemical and biological assays[J]. Nutrients, 2013, 5(1):149-161.
    [25] NAKAI S. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa[J]. Water Research, 2000, 34(11):3026-3032.
    [26] REYNOLDS L D, WILSON N G. Scribes and scholars 3rd ed[M]. Oxford:1991:193-194.
    [27] HUA G, KIM J, RECKHOW D A. Disinfection byproduct formation from lignin precursors[J]. Water Research, 2014, 63:285-295.
    [28] TAN K H. Humic matter in soil and the environment. Principles and controversies[M]. New York:Marcel Dekker, 2003:408.
    [29] RICE E W, BAIRD R B, EATON A D, et al. Standard methods for the examination of water and wastewater, 22 ed[M]. Washington, DC, Amer Public Health Assn, 2012.
    [30] JONES M, GLOVER C. A fast efficient method to determine the presence of nitrosamines in cosmetics, personal care, and consumer products[J]. Waters Application Note 720005664EN, 2016.
    [31] PAN Y, WANG Y, LI A M, et al. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Water Research, 2017, 112:129-136.
    [32] SMITH M B, MARCH J. March's advanced organic chemistry:Reactions, mechanisms, and structure[M]. New Jersey:John Wiley & Sons, Inc., Hoboken, 2007:747-748.
    [33] PAN Y, ZHANG X R, WAGNER E D, et al. Boiling of simulated tap water:Effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity[J]. Environmental Science & Technology, 2014, 48(1):149-156.
    [34] CHU W H, GAO N Y KRASNER S W, et al. Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water[J]. Environmental Pollution, 2012, 161(1):8-14.
    [35] 楚文海, 高乃云, 赵世嘏, 等.在饮水中典型溶解性有机氮酪氨酸氯化生成氯仿的机理分析[J].化学学报, 2009, 67(21):2505-2510.

    CHU W H, GAO N Y, ZHAO S G, et al. The mechanism analysis of formation of chloroform dissolved organic nitrogen tyrosine chlorination in during typical drinking water[J]. Acta Chimica Sinica, 2009, 67(21):2505-2510(in Chinese).

  • 加载中
计量
  • 文章访问数:  1945
  • HTML全文浏览数:  1793
  • PDF下载数:  229
  • 施引文献:  0
出版历程
  • 收稿日期:  2007-02-15
  • 刊出日期:  2017-10-15
王莹, 陈泽智, 李爱民, 周庆, 李欢, 潘旸. 13种新型极性苯酚类氯/溴代消毒副产物的生成机理[J]. 环境化学, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501
引用本文: 王莹, 陈泽智, 李爱民, 周庆, 李欢, 潘旸. 13种新型极性苯酚类氯/溴代消毒副产物的生成机理[J]. 环境化学, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501
WANG Ying, CHEN Zezhi, LI Aimin, ZHOU Qing, LI Huan, PAN Yang. Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Environmental Chemistry, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501
Citation: WANG Ying, CHEN Zezhi, LI Aimin, ZHOU Qing, LI Huan, PAN Yang. Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water[J]. Environmental Chemistry, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501

13种新型极性苯酚类氯/溴代消毒副产物的生成机理

  • 1. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京, 210023
基金项目:

国家自然科学基金(51438008,51408296)和江苏省自然科学基金(BK20140607)资助.

摘要: 近年来,基于超高效液相色谱/电喷雾电离三重四极杆质谱(UPLC/ESI-tqMS)的多反应监测扫描(MRM)、前体离子扫描和子离子扫描技术,研究人员在饮用水中发现了13种新型极性苯酚类氯/溴代消毒副产物(Cl-/Br-DBPs).它们不仅具有比脂肪族消毒副产物更高的细胞毒性、生长发育毒性和生长抑制作用,而且降解后会产生三卤甲烷和卤代乙酸类消毒副产物,因此受到了人们的极大关注.为探究13种新型极性苯酚类Cl-/Br-DBPs在饮用水消毒过程中的生成机理以及更好地控制其生成,本研究以没食子酸为前驱物,在实验室模拟氯和氯胺的消毒过程,通过UPLC/ESI-tqMS MRM方法分析没食子酸和氯/氯胺消毒反应的终产物及部分中间产物,并推测了这13种Cl-/Br-DBPs在氯消毒过程中的反应路径.结果表明,模拟和实际饮用水水源水中均存在没食子酸,且经氯/氯胺消毒后的没食子酸反应液中生成了10种新型极性苯酚类Cl-/Br-DBPs,证明没食子酸是生成13种新型极性苯酚类Cl-/Br-DBPs的前驱物之一.

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回