[1]
|
VEGLIO F, QUARESIMA R, FORNARI P, et al. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning[J]. Waste Management, 2003, 23(3):245-252.
|
[2]
|
VEIT H M, BERNARDES A M, FERREIRA J Z, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy[J]. Journal of Hazardous Materials, 2006, 137(3):1704-1709.
|
[3]
|
CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste:A review[J]. Journal of Hazardous Materials, 2008, 158(2):228-256.
|
[4]
|
BRIERLEY C. How will biomining be applied in future?[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1302-1310.
|
[5]
|
ROHWERDER T, GEHRKE T, KINZLER K, et al. Bioleaching review part A:Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Appl Microbiol Biotechnol, 2003, 63(3):239-248.
|
[6]
|
XIANG Y, WU P, ZHU N, et al. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage[J]. Journal of Hazardous Materials, 2010, 184(1):812-818.
|
[7]
|
BAJESTANI M I, MOUSAVI S, SHOJAOSADATI S. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans:Statistical evaluation and optimization[J]. Separation and Purification Technology, 2014, 132:309-316.
|
[8]
|
LI J, LIANG C, MA C. Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum[J]. Journal of Material Cycles and Waste Management, 2015, 17(3):529-539.
|
[9]
|
DONATI E R, SAND W. Microbial processing of metal sulfides[M]. Springer, 2007.
|
[10]
|
WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
|
[11]
|
FRIEDRICH C G. Physiology and genetics of sulfur-oxidizing bacteria[J]. Advances in Microbial Physiology, 1997, 39:235-289.
|
[12]
|
OKIBE N, GERICKE M, HALLBERG K B, et al. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation[J]. Applied & Environmental Microbiology, 2003, 69(4):1936-1943.
|
[13]
|
ROBERTSON W, KINNUNEN P M, PLUMB J, et al. Moderately thermophilic iron oxidising bacteria isolated from a pyritic coal deposit showing spontaneous combustion[J]. Minerals Engineering, 2002, 15(11):815-822.
|
[14]
|
OPRIME M E, GARCIA O, CARDOSO A A. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J]. Process Biochemistry, 2001, 37(2):111-114.
|
[15]
|
APPIA-AYME C, GUILIANI N, RATOUCHNIAK J, et al. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020[J]. Applied & Environmental Microbiology, 1999, 65(11):4781-4787.
|
[16]
|
ELBEHTI A, BRASSEUR M D. First evidence for existence of an uphill electron transfer through the bc(1) and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 2000, 182(12):3602-3606.
|
[17]
|
LI Y, LI H. Type Ⅳ pili of acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors[J]. Journal of Basic Microbiology, 2014, 54(3):226-231.
|
[18]
|
RAWLINGS D E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005, 4(1):54-56.
|
[19]
|
ROHWERDER T, SAND W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology, 2003, 149(7):1699-1710.
|
[20]
|
WAKAI S, KIKUMOTO M, KANAO T, et al. Involvement of sulfide:Quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1[J]. Bioscience Biotechnology & Biochemistry, 2004, 68(12):2519-2528.
|
[21]
|
NATARAJAN K. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering, 1992, 39(9):907-913.
|
[22]
|
SCOTT T, DYSON N. The catalyzed oxidation of zinc sulfide under acid pressure leaching conditions[J]. Transactions of the Metallurgical Society of AIME, 1968, 242(119681):1815-1182.
|
[23]
|
NATARAJAN K A. Bioleaching of sulphides under applied potentials[J]. Hydrometallurgy, 1992, 29(1-3):161-172.
|
[24]
|
YUNKER S B, RADOVICH J M. Enhancement of growth and ferrous iron oxidation rates of T. Ferrooxidans by electrochemical reduction of ferric iron[J]. Biotechnology and Bioengineering, 1986, 28(12):1867-1875.
|
[25]
|
TURICK C E, TISA L S, JR C F. Melanin production and use as a soluble electron shuttle for Fe(Ⅲ) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Applied & Environmental Microbiology, 2002, 68(5):2436-2444.
|
[26]
|
KATO S, HASHIMOTO K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences, 2012, 109(25):10042-10046.
|
[27]
|
MYERS J M, MYERS C R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone[J]. Journal of Bacteriology, 2000, 182(1):67-75.
|
[28]
|
KALATHIL S, PANT D. Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems[J]. RSC Advances, 2016, 6(36):30582-30597.
|
[29]
|
LIANG C L, XIA J L, ZHAO X J, et al. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis[J]. Hydrometallurgy, 2010, 105(1):179-185.
|
[30]
|
LIU F, ROTARU A E, SHRESTHA P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10):8982-8989.
|
[31]
|
CHEN S, ROTARU A E, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4(20):163-168.
|
[32]
|
KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7):1646-1654.
|
[33]
|
WANG S, ZHENG Y, YAN W, et al. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar[J]. Journal of Hazardous Materials, 2016, 320:393-400.
|
[34]
|
WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6):633-641.
|
[35]
|
HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Applied and Environmental Microbiology, 2004, 70(2):921-928.
|
[36]
|
DE MARCO I, CABALLERO B, CHOMÍN M, et al. Pyrolysis of electrical and electronic wastes[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2):179-183.
|
[37]
|
VON CANSTEIN H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3):615-623.
|
[38]
|
WANG Y F, MASUDA M, TSUJIMURA S, et al. Electrochemical regulation of the end-product profile in Propionibacterium freudenreichii ET-3 with an endogenous mediator[J]. Biotechnology and Bioengineering, 2008, 101(3):579-586.
|
[39]
|
CAO X, HUANG X, BOON N, et al. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell[J]. Electrochemistry Communications, 2008, 10(9):1392-1395.
|
[40]
|
WU S, XIAO Y, WANG L, et al. Extracellular electron transfer mediated by flavins in gram-positive Bacillus sp. WS-XY1 and yeast Pichia stipitis[J]. Electrochimica Acta, 2014, 146:564-567.
|
[41]
|
LEE S W. Enhancement of arsenic mobility by Fe(Ⅲ)-reducing bacteria from iron oxide minerals[J]. Journal of Material Cycles and Waste Management, 2013, 15(3):362-369.
|
[42]
|
HONG Y, WU P, LI W, et al. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3[J]. Applied Microbiology and Biotechnology, 2012, 93(6):2661-2668.
|
[43]
|
JIANG J, KAPPLER A. Kinetics of microbial and chemical reduction of humic substances:Implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10):3563-3569.
|
[44]
|
SHIMIZU T. Binding of cysteine thiolate to the Fe(Ⅲ) heme complex is critical for the function of heme sensor proteins[J]. Journal of Inorganic Biochemistry, 2011, 108(9):171-177.
|