电子垃圾生物浸出的电化学强化机制

周秀丽, 郑越, 王淑华, 陈必链, 赵峰. 电子垃圾生物浸出的电化学强化机制[J]. 环境化学, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103
引用本文: 周秀丽, 郑越, 王淑华, 陈必链, 赵峰. 电子垃圾生物浸出的电化学强化机制[J]. 环境化学, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103
ZHOU Xiuli, ZHENG Yue, WANG Shuhua, CHEN Bilian, ZHAO Feng. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes[J]. Environmental Chemistry, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103
Citation: ZHOU Xiuli, ZHENG Yue, WANG Shuhua, CHEN Bilian, ZHAO Feng. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes[J]. Environmental Chemistry, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103

电子垃圾生物浸出的电化学强化机制

  • 基金项目:

    国家重大科学仪器设备开发专项课题(2013YQ17058508),国家自然科学基金(41471260)和厦门市科技计划项目资助.

Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes

  • Fund Project: Supported by the National Key Scientific Instrument and Equipment Development Projects, China(2013YQ17058508), National Natural Science Foundation of China(41471260) and Science and Technology Program in Xiamen.
  • 摘要: 电子垃圾的不当处理已造成了严重的环境和健康问题.生物浸出技术具有低成本和环境友好的优点,为电子垃圾的有效资源化提供了一种选择,但是,目前该技术在实际应用中存在耗时长的瓶颈.电子垃圾生物浸出的反应机制、功能微生物的胞外电子传递都涉及到氧化还原反应,因此,电化学反应可提高电子垃圾中金属的生物浸出效率.本文总结了生物浸出过程中常见的功能菌种及其胞外电子传递途径,以此为基础,阐述了通过电势强化、金属阳离子强化、直接电子调控和间接电子调控的电化学强化方法,以期推动电子垃圾资源化的实际应用.
  • 加载中
  • [1] VEGLIO F, QUARESIMA R, FORNARI P, et al. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning[J]. Waste Management, 2003, 23(3):245-252.
    [2] VEIT H M, BERNARDES A M, FERREIRA J Z, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy[J]. Journal of Hazardous Materials, 2006, 137(3):1704-1709.
    [3] CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste:A review[J]. Journal of Hazardous Materials, 2008, 158(2):228-256.
    [4] BRIERLEY C. How will biomining be applied in future?[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1302-1310.
    [5] ROHWERDER T, GEHRKE T, KINZLER K, et al. Bioleaching review part A:Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Appl Microbiol Biotechnol, 2003, 63(3):239-248.
    [6] XIANG Y, WU P, ZHU N, et al. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage[J]. Journal of Hazardous Materials, 2010, 184(1):812-818.
    [7] BAJESTANI M I, MOUSAVI S, SHOJAOSADATI S. Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans:Statistical evaluation and optimization[J]. Separation and Purification Technology, 2014, 132:309-316.
    [8] LI J, LIANG C, MA C. Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum[J]. Journal of Material Cycles and Waste Management, 2015, 17(3):529-539.
    [9] DONATI E R, SAND W. Microbial processing of metal sulfides[M]. Springer, 2007.
    [10] WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
    [11] FRIEDRICH C G. Physiology and genetics of sulfur-oxidizing bacteria[J]. Advances in Microbial Physiology, 1997, 39:235-289.
    [12] OKIBE N, GERICKE M, HALLBERG K B, et al. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation[J]. Applied & Environmental Microbiology, 2003, 69(4):1936-1943.
    [13] ROBERTSON W, KINNUNEN P M, PLUMB J, et al. Moderately thermophilic iron oxidising bacteria isolated from a pyritic coal deposit showing spontaneous combustion[J]. Minerals Engineering, 2002, 15(11):815-822.
    [14] OPRIME M E, GARCIA O, CARDOSO A A. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J]. Process Biochemistry, 2001, 37(2):111-114.
    [15] APPIA-AYME C, GUILIANI N, RATOUCHNIAK J, et al. Characterization of an operon encoding two c-type cytochromes, an aa(3)-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020[J]. Applied & Environmental Microbiology, 1999, 65(11):4781-4787.
    [16] ELBEHTI A, BRASSEUR M D. First evidence for existence of an uphill electron transfer through the bc(1) and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 2000, 182(12):3602-3606.
    [17] LI Y, LI H. Type Ⅳ pili of acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors[J]. Journal of Basic Microbiology, 2014, 54(3):226-231.
    [18] RAWLINGS D E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005, 4(1):54-56.
    [19] ROHWERDER T, SAND W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology, 2003, 149(7):1699-1710.
    [20] WAKAI S, KIKUMOTO M, KANAO T, et al. Involvement of sulfide:Quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1[J]. Bioscience Biotechnology & Biochemistry, 2004, 68(12):2519-2528.
    [21] NATARAJAN K. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering, 1992, 39(9):907-913.
    [22] SCOTT T, DYSON N. The catalyzed oxidation of zinc sulfide under acid pressure leaching conditions[J]. Transactions of the Metallurgical Society of AIME, 1968, 242(119681):1815-1182.
    [23] NATARAJAN K A. Bioleaching of sulphides under applied potentials[J]. Hydrometallurgy, 1992, 29(1-3):161-172.
    [24] YUNKER S B, RADOVICH J M. Enhancement of growth and ferrous iron oxidation rates of T. Ferrooxidans by electrochemical reduction of ferric iron[J]. Biotechnology and Bioengineering, 1986, 28(12):1867-1875.
    [25] TURICK C E, TISA L S, JR C F. Melanin production and use as a soluble electron shuttle for Fe(Ⅲ) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Applied & Environmental Microbiology, 2002, 68(5):2436-2444.
    [26] KATO S, HASHIMOTO K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences, 2012, 109(25):10042-10046.
    [27] MYERS J M, MYERS C R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone[J]. Journal of Bacteriology, 2000, 182(1):67-75.
    [28] KALATHIL S, PANT D. Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems[J]. RSC Advances, 2016, 6(36):30582-30597.
    [29] LIANG C L, XIA J L, ZHAO X J, et al. Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis[J]. Hydrometallurgy, 2010, 105(1):179-185.
    [30] LIU F, ROTARU A E, SHRESTHA P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10):8982-8989.
    [31] CHEN S, ROTARU A E, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4(20):163-168.
    [32] KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7):1646-1654.
    [33] WANG S, ZHENG Y, YAN W, et al. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar[J]. Journal of Hazardous Materials, 2016, 320:393-400.
    [34] WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6):633-641.
    [35] HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Applied and Environmental Microbiology, 2004, 70(2):921-928.
    [36] DE MARCO I, CABALLERO B, CHOMÍN M, et al. Pyrolysis of electrical and electronic wastes[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2):179-183.
    [37] VON CANSTEIN H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3):615-623.
    [38] WANG Y F, MASUDA M, TSUJIMURA S, et al. Electrochemical regulation of the end-product profile in Propionibacterium freudenreichii ET-3 with an endogenous mediator[J]. Biotechnology and Bioengineering, 2008, 101(3):579-586.
    [39] CAO X, HUANG X, BOON N, et al. Electricity generation by an enriched phototrophic consortium in a microbial fuel cell[J]. Electrochemistry Communications, 2008, 10(9):1392-1395.
    [40] WU S, XIAO Y, WANG L, et al. Extracellular electron transfer mediated by flavins in gram-positive Bacillus sp. WS-XY1 and yeast Pichia stipitis[J]. Electrochimica Acta, 2014, 146:564-567.
    [41] LEE S W. Enhancement of arsenic mobility by Fe(Ⅲ)-reducing bacteria from iron oxide minerals[J]. Journal of Material Cycles and Waste Management, 2013, 15(3):362-369.
    [42] HONG Y, WU P, LI W, et al. Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C3[J]. Applied Microbiology and Biotechnology, 2012, 93(6):2661-2668.
    [43] JIANG J, KAPPLER A. Kinetics of microbial and chemical reduction of humic substances:Implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10):3563-3569.
    [44] SHIMIZU T. Binding of cysteine thiolate to the Fe(Ⅲ) heme complex is critical for the function of heme sensor proteins[J]. Journal of Inorganic Biochemistry, 2011, 108(9):171-177.
  • 加载中
计量
  • 文章访问数:  1285
  • HTML全文浏览数:  1211
  • PDF下载数:  205
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-02-01
  • 刊出日期:  2017-10-15
周秀丽, 郑越, 王淑华, 陈必链, 赵峰. 电子垃圾生物浸出的电化学强化机制[J]. 环境化学, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103
引用本文: 周秀丽, 郑越, 王淑华, 陈必链, 赵峰. 电子垃圾生物浸出的电化学强化机制[J]. 环境化学, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103
ZHOU Xiuli, ZHENG Yue, WANG Shuhua, CHEN Bilian, ZHAO Feng. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes[J]. Environmental Chemistry, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103
Citation: ZHOU Xiuli, ZHENG Yue, WANG Shuhua, CHEN Bilian, ZHAO Feng. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes[J]. Environmental Chemistry, 2017, 36(10): 2100-2106. doi: 10.7524/j.issn.0254-6108.2017020103

电子垃圾生物浸出的电化学强化机制

  • 1.  福建师范大学生命科学学院, 福州, 350108;
  • 2.  中国科学院城市污染物转化重点实验室, 中国科学院城市环境研究所, 厦门, 361021
基金项目:

国家重大科学仪器设备开发专项课题(2013YQ17058508),国家自然科学基金(41471260)和厦门市科技计划项目资助.

摘要: 电子垃圾的不当处理已造成了严重的环境和健康问题.生物浸出技术具有低成本和环境友好的优点,为电子垃圾的有效资源化提供了一种选择,但是,目前该技术在实际应用中存在耗时长的瓶颈.电子垃圾生物浸出的反应机制、功能微生物的胞外电子传递都涉及到氧化还原反应,因此,电化学反应可提高电子垃圾中金属的生物浸出效率.本文总结了生物浸出过程中常见的功能菌种及其胞外电子传递途径,以此为基础,阐述了通过电势强化、金属阳离子强化、直接电子调控和间接电子调控的电化学强化方法,以期推动电子垃圾资源化的实际应用.

English Abstract

参考文献 (44)

返回顶部

目录

/

返回文章
返回