生物炭老化后理化性质及微观结构的表征

林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
引用本文: 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
LIN Qingyi, JIANG Cuncang, ZHANG Mengyang. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
Citation: LIN Qingyi, JIANG Cuncang, ZHANG Mengyang. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703

生物炭老化后理化性质及微观结构的表征

  • 基金项目:

    国家公益性行业农业科研专项(201303095)和国家重点研发计划(2017YFD0200800)资助.

Characterization of the physical and chemical structures of biochar under simulated aging condition

  • Fund Project: Supported by the National Public Welfare Industry Special Scientific Research of China(201303095) and the National Key Research and Developmeng Plan(2017YFD0200800).
  • 摘要: 在长期降水淋洗或温室效应产生酸雨等环境影响下,施入土壤中的生物质炭会随时间的推移而逐渐发生老化作用,而其老化后理化性质及结构等如何改变是广受关注的新问题.本文通过水洗和酸化两种方法对花生壳生物炭进行模拟老化试验,并利用元素分析仪、扫描电镜(SEM)、X射线衍射光谱(XRD)和傅立叶红外光谱分析仪(FTIR)研究生物炭老化前后的理化性质及结构差异.结果表明:(1)生物炭经老化处理后pH值均下降,且酸化生物炭(acidulated biochar,AB)比水洗生物炭(washing biochar,WB)的下降程度大;另外,WB的O/C和(O+N)/C分别下降了8.89%和10.42%,而AB的O/C和(O+N)/C却升高了11.11%和14.58%,表明生物炭老化后其亲水性和极性发生改变;且WB和AB的碱性元素总量分别比原生物炭(primary biochar,PB)下降了26.53%和88.78%,说明生物炭老化后有较多的碱性元素被释放.(2)与原生物炭相比,生物炭水洗老化后表面较平整且微孔结构保持完好,而酸化老化后表面较粗糙、微孔结构严重破坏.(3)生物炭老化后,其表面Al2SiO5和SiO2晶体的含量均明显下降;与PB相比,WB新增加了1166 cm-1和1082 cm-1特征峰2个;而AB新出现了1705 cm-1、1622 cm-1和1546 cm-1特征峰3个,并减少了466 cm-1这个振动峰,且其他特征峰的吸光度较原生物炭整体降低,说明生物炭在老化过程中其含氧官能团增加,而其它官能团数量和其表面的晶体含量都有所减少.因此,生物炭在一定环境作用下,其老化过程中一些元素释放而含量减少,且导致物质结构的破坏.
  • 加载中
  • [1] 郑庆福, 王永和, 孙月光, 等. 不同物料和炭化方式制备生物炭结构性质的FTIR研究[J]. 光谱学与光谱分析, 2014, 34(4):962-966.

    ZHENG Q F, WANG Y H, SUN Y G, et al. Study on structural properties of biochar under different materials and carbonized by FTIR[J]. Spectroscopy and Spectral Analysis,2014(4):962-966(in Chinese).

    [2] 张旭东, 梁超, 诸葛玉平,等. 黑碳在土壤有机碳生物地球化学循环中的作用[J]. 土壤通报, 2003, 34(4):349-355.

    ZHANG X D, LIANG C, ZHUGE Y P, et al. Roles of black carbon in the biogeochemical cycles of soil organic carbon[J]. Chinese Journal of Soil Science, 2003, 34(4):349-355(in Chinese).

    [3] SPOKAS K A, KOSKINEN W C, BAKER J M, et al. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J]. Chemosphere, 2009, 77(4):574-581.
    [4] YAO F X, ARBESTAIN M C, VIRGEL S, et al. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor[J]. Chemosphere, 2010, 80(7):724-732.
    [5] MAO J D, PIGNATELLO J J, LEHMANN J, et al. Characterization of charcoal using advanced solid-state nmr[C]. Abstracts of Papers of the American Chemical Society 2010:240.
    [6] 陈昱, 梁媛, 郑章琪, 等. 老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响[J]. 环境化学,2016,35(11):2337-2343.

    CHEN Y, LIANG Y, ZHENG Z Q, et al. Effect of ageing on Cd adsorption ability by rice-straw derived biochar[J]. Environmental Chemistry, 2016,35(11):2337-2343(in Chinese).

    [7] 唐伟,郭悦,吴景贵, 等. 老化的生物质炭性质变化及对菲吸持的影响[J]. 环境科学, 2014, 35(7):2604-2611.

    TANG W, GUO Y, WU J G, et al. Structural changes of aged biochar and the influence on phenanthrene adsorption[J]. Environmental Science, 2014, 35(7):2604-2611(in Chinese).

    [8] 赵其国,黄国勤,马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24):7615-7622.

    ZHAO Q G, HUANG G Q, MA Y Q, The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24):7615-7622(in Chinese).

    [9] 钱林波. 生物碳对酸性土壤中有害金属植物毒性缓解及阻控机理[D]. 杭州:浙江大学, 2014. QIAN L B. The phytotoxicity alleviation and adsorption mechanism of toxic metals of acidic soil by biochar amendment[D]. Hangzhou:Zhejiang University, 2014(in Chinese).
    [10] QIAN L, CHEN M, CHEN B. Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes[J]. Journal of Soils and Sediments, 2015, 15(5):1130-1138.
    [11] 陈再明,陈宝梁,周丹丹. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013, 33(1):9-19.

    CHEN Z M, CHEN B L, ZHOU D D. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 2013, 33(1):9-19(in Chinese).

    [12] 吴诗雪, 王欣, 陈灿,等. 凤眼莲、稻草和污泥制备生物炭的特性表征与环境影响解析[J]. 环境科学学报, 2015, 35(12):4021-4032.

    WU S X, WANG X, CHEN C, et al. Characterization of biochar derived from water hyacinth,rice straw and sewage sludge and their environmental implications[J]. Acta Scientiae Circumstantiae, 2015, 35(12):4021-4032(in Chinese).

    [13] ZHAO R, JIANG D, COLES N, et al. Effects of biochar on the acidity of a loamy clay soil under different incubation conditions[J]. Journal of Soils and Sediments, 2015, 15(9):1919-1926.
    [14] SEREDYCH M, HULICOVA-JURCAKOVA D, GAO Q L, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11):1475-1488.
    [15] LIN Y, MUNROE P, JOSEPH S, et al. Nanoscale organo-mineral reactions of biochars in ferrosol:An investigation using microscopy[J]. Plant and Soil, 2012, 357(1):369-380.
    [16] RONDON M A, LEHMANN J, RAMÍREZ J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions[J]. Biology and Fertility of Soils, 2007, 43(6):699-708.
    [17] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review.[J]. Chemosphere, 2014, 99(3):19-33.
    [18] UCHIMIYA M, BANNON D I, WARTELLE L H, et al. Lead retention by broiler litter biochars in small arms range soil:Impact of pyrolysis temperature[J]. Journal of Agricultural & Food Chemistry, 2012, 60(20):5035-5044.
    [19] BAGREEV A, BANDOSZ T J, LOCKE D C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J]. Carbon, 2001, 39(13):1971-1979.
    [20] LUO Y, DURENKAMP M, NOBILI M D, et al. Microbial biomass growth, following incorporation of biochars produced at 350℃ or 700℃ in a silty-clay loam soil of high and low pH[J]. Soil Biology & Biochemistry, 2013, 57:513-523.
    [21] QIAN L, CHEN B. Dual role of biochars as adsorbents for aluminum:The effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15):8759-8768.
    [22] 张晗, 林宁, 黄仁龙,等. 不同生物质制备的生物炭对菲的吸附特性研究[J]. 环境工程, 2016(10):166-171. ZHANG H, LIN N, HUANG R L, et al. Sorption of phenanthrene on biochars produced from different biomass materials[J]. Environmental Engineering, 2016

    (10):166-171(in Chinese).

    [23] CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14):5137-5143.
    [24] 罗煜, 赵立欣, 孟海波, 等. 不同温度下热裂解芒草生物质炭的理化特征分析[J]. 农业工程学报, 2013, 29(13):208-217.

    LUO Y, ZHAO L X, MENG H B, et al. Physio-chemical characterization of biochars pyrolyzed from miscanthus under two different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13):208-217(in Chinese).

    [25] YANG H, XU R, XUE X, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials, 2008, 152(2):690-698.
    [26] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
    [27] 吴秀文, 郝艳淑, 雷晶,等. 钾硼胁迫对棉花功能叶物质成分影响的FTIR表征[J]. 光谱学与光谱分析, 2016, 36(3):676-680.

    WU X W, HAO Y S, LEI J, et al. FTIR spectroscopic characterization of material composition in functional leaf of cotton under stress of potassium and boron[J]. Spectroscopy and Spectral Analysis, 2016, 36(3):676-680(in Chinese).

    [28] 陈成广,周树烽,胡保卫, 等. 农沟底泥和水稻秸秆热解制备生物碳球及其氨氮吸附研究[J]. 水利学报, 2017(3):325-333. CHEN C G, ZHOU S F, HU B W, et al. Preparation of biochar ball with agricultural ditch sediment and rice straw by pyrolysis and adsorption of ammonium[J]. Journal of Hydraulic Engineering, 2017

    (3):325-333(in Chinese).

  • 加载中
计量
  • 文章访问数:  2315
  • HTML全文浏览数:  2199
  • PDF下载数:  318
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-02-17
  • 刊出日期:  2017-10-15
林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
引用本文: 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
LIN Qingyi, JIANG Cuncang, ZHANG Mengyang. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
Citation: LIN Qingyi, JIANG Cuncang, ZHANG Mengyang. Characterization of the physical and chemical structures of biochar under simulated aging condition[J]. Environmental Chemistry, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703

生物炭老化后理化性质及微观结构的表征

  • 1. 华中农业大学微量元素研究中心/农业部长江中下游耕地保育重点实验室, 武汉, 430070
基金项目:

国家公益性行业农业科研专项(201303095)和国家重点研发计划(2017YFD0200800)资助.

摘要: 在长期降水淋洗或温室效应产生酸雨等环境影响下,施入土壤中的生物质炭会随时间的推移而逐渐发生老化作用,而其老化后理化性质及结构等如何改变是广受关注的新问题.本文通过水洗和酸化两种方法对花生壳生物炭进行模拟老化试验,并利用元素分析仪、扫描电镜(SEM)、X射线衍射光谱(XRD)和傅立叶红外光谱分析仪(FTIR)研究生物炭老化前后的理化性质及结构差异.结果表明:(1)生物炭经老化处理后pH值均下降,且酸化生物炭(acidulated biochar,AB)比水洗生物炭(washing biochar,WB)的下降程度大;另外,WB的O/C和(O+N)/C分别下降了8.89%和10.42%,而AB的O/C和(O+N)/C却升高了11.11%和14.58%,表明生物炭老化后其亲水性和极性发生改变;且WB和AB的碱性元素总量分别比原生物炭(primary biochar,PB)下降了26.53%和88.78%,说明生物炭老化后有较多的碱性元素被释放.(2)与原生物炭相比,生物炭水洗老化后表面较平整且微孔结构保持完好,而酸化老化后表面较粗糙、微孔结构严重破坏.(3)生物炭老化后,其表面Al2SiO5和SiO2晶体的含量均明显下降;与PB相比,WB新增加了1166 cm-1和1082 cm-1特征峰2个;而AB新出现了1705 cm-1、1622 cm-1和1546 cm-1特征峰3个,并减少了466 cm-1这个振动峰,且其他特征峰的吸光度较原生物炭整体降低,说明生物炭在老化过程中其含氧官能团增加,而其它官能团数量和其表面的晶体含量都有所减少.因此,生物炭在一定环境作用下,其老化过程中一些元素释放而含量减少,且导致物质结构的破坏.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回