位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用

黄丽敏, 靳强, 杨斌, 朱学远. 位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用[J]. 环境化学, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506
引用本文: 黄丽敏, 靳强, 杨斌, 朱学远. 位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用[J]. 环境化学, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506
HUANG Limin, JIN Qiang, YANG Bin, ZHU Xueyuan. Site energy distribution theory and its applications in the adsorption of contaminants in soils and sediments[J]. Environmental Chemistry, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506
Citation: HUANG Limin, JIN Qiang, YANG Bin, ZHU Xueyuan. Site energy distribution theory and its applications in the adsorption of contaminants in soils and sediments[J]. Environmental Chemistry, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506

位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用

  • 基金项目:

    国家自然科学基金(21476139),国家水体污染控制与治理科技重大专项(2014ZX07204-008)和上海交通大学PRP项目(T160PRP31010)资助.

Site energy distribution theory and its applications in the adsorption of contaminants in soils and sediments

  • Fund Project: Supported by the National Natural Science Foundation of China (21476139), the Major Science and Technology Program of China for Water Pollution Control and Treatment (2014ZX07204-008) and Participation in Research Program (PRP) (T160PRP31010) from Shanghai Jiao Tong University.
  • 摘要: 位点能量分布理论(Site energy distribution theory,SEDT)是一种从能量的角度去研究吸附机理的理论方法,它可以提供吸附剂表面位点的吸附能量以及对应的分布函数.因此SEDT在吸附能不均匀的吸附剂表面上的应用有着独特的优势.该理论在化学化工领域的吸附剂材料上有着广泛的应用,尤其是在碳材料上有着较为深入的研究.土壤和沉积物是环境中重要的天然吸附剂,有着比碳材料表面更复杂的特性,因此已有研究将SEDT用于土壤和沉积物对污染物的吸附过程中.然而现有的研究在污染物对象的选取以及该理论的应用方式上存在一定的局限性.鉴于SEDT在土壤和沉积物上的应用潜能及重要意义,本文详细地介绍了SEDT的主要内容,并综述了SEDT在国内外吸附领域的应用研究进展,旨在将化学化工领域已有的SEDT应用与讨论方式迁移到环境领域中,最后对SEDT在土壤和沉积物上更深入的应用以及SEDT自身的发展提出了展望.
  • 加载中
  • [1] CARTER M C, KILDUFF J E, WEBER W J. Site energy distribution analysis of preloaded adsorbents[J]. Environmental Science & Technology, 1995, 29(7):1773-1780.
    [2] KALIES G, BRÄUER P, SZOMBATHELY M. Design of liquid/solid adsorption isotherms by energy distribution functions[J]. Journal of Colloid and Interface Science, 2009, 331(2):329-334.
    [3] BUSHENKOV V A, RAMALHO J P, SMIRNOV G V. Adsorption integral equation via complex approximation with constraints:The Langmuir kernel[J]. Journal of Computational Chemistry, 2000, 21(3):191-200.
    [4] KATSANOS N A, ARVANITOPOULOU E, ROUBANI-KALANTZOPOULOU F, et al. Time distribution of adsorption energies, local monolayer capacities, and local isotherms on heterogeneous surfaces by inverse gas chromatography[J]. The Journal of Physical Chemistry B, 1999, 103(7):1152-1157.
    [5] STASZCZUK P. The studies of the heterogeneous properties of solid surfaces by means of the derivatograph Q-1500 D[J]. Journal of Thermal Analysis and Calorimetry, 1998, 53(2):597-616.
    [6] RUDZINSKI W, BOROWIECKI T, PANCZYK T, et al. A quantitative approach to calculating the energetic heterogeneity of solid surfaces from an analysis of TPD peaks:Comparison of the results obtained using the absolute rate theory and the statistical rate theory of interfacial transport[J]. The Journal of Physical Chemistry B, 2000, 104(9):1984-1997.
    [7] DZIONEK A, WOJCIESZYŃSKA D, GUZIK U. Natural carriers in bioremediation:A review[J]. Electronic Journal of Biotechnology, 2016, 23:28-36.
    [8] ZHAO Q H, WANG Y, CAO Y, et al. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China[J]. Science of the Total Environment, 2014, 470:340-347.
    [9] ANITESCU G, TAVLARIDES L L. Supercritical extraction of contaminants from soils and sediments[J]. The Journal of Supercritical Fluids, 2006, 38(2):167-180.
    [10] ZOUMIS T, SCHMIDT A, GRIGOROVA L, et al. Contaminants in sediments:Remobilisation and demobilisation[J]. Science of the Total Environment, 2001, 266(1):195-202.
    [11] 赵旭, 王毅力, 郭瑾珑,等. 颗粒物微界面吸附模型的分形修正——朗格缪尔(Langmuir)、弗伦德利希(Freundlich)和表面络合模型[J]. 环境科学学报, 2005, 25(1):52-57.

    ZHAO X, WANG Y L, GUO J L, et al. Modification of the micro-interface adsorption model on particles with fractal theory-Langmuir, Freundlich and surface complexation adsorption model[J]. Acta Scientiae Circumstantiae, 2005, 25(1):52-57(in Chinese).

    [12] YUAN G S, XING B S. Site-energy distribution analysis of organic chemical sorption by soil organic matter[J]. Soil Science, 1999, 164(7):503-509.
    [13] JARONIEC M, MARCZEWSKI A W. Physical adsorption of gases on energetically heterogeneous solids I. Generalized Langmuir equation and its energy distribution[J]. Monatshefte Für Chemie/Chemical Monthly, 1984, 115(8/9):997-1012.
    [14] MAYAGOITIA V, ROJAS F, RICCARDO J L, et al. Dual site-bond description of heterogeneous surfaces[J]. Physical Review B, 1990, 41(10):7150-7155.
    [15] MITANI Y, TSUTSUMI K, TAKAHASHI H. Validity of energy distribution derived from heat of adsorption in an ammonia/cation-exchanged Y zeolite system[J]. Colloid & Polymer Science, 1986, 264(5):445-448.
    [16] FVNFSCHILLING J, ZSCHOKKE-GRÄNACHER I, WILLIAMS D F. The determination of the site-energy distribution of organic molecules dissolved in glassy matrices[J]. The Journal of Chemical Physics, 1981, 75(8):3669-3673.
    [17] CHOUDHARY V R, AKOLEKAR D B. Site energy distribution and catalytic properties of microporous crystalline AlPO4-5[J]. Journal of Catalysis, 1987, 103(1):115-125.
    [18] DERYLO-MARCZEWSKA A, JARONIEC M, GELBIN D, et al. Heterogeneity effects in single-solute adsorption from dilute solutions on solids[J]. Chemica Scripta, 1984, 24(4/5):239-246.
    [19] SIRCAR S, MYERS A L. Equilibrium adsorption of gases and liquids on heterogeneous adsorbents-A practical viewpoint[J]. Surface Science, 1988, 205(3):353-386.
    [20] MISRA D N. New adsorption isotherm for heterogeneous surfaces[J]. The Journal of Chemical Physics, 1970, 52(11):5499-5501.
    [21] JARONIEC M, MADEY R. Studies in physical and theoretical chemistry[M]. Amsterdam:Elsevier, 1988:59.
    [22] RUDZINSKI W, EVERETT D H. Adsorption of gases on heterogeneous surfaces[M]. London:Academic Press, 1992:420.
    [23] CEROFOLINI G F. Localized adsorption on heterogeneous surfaces[J]. Thin Solid Films, 1974, 23(2):129-152.
    [24] JIN Q, YANG Y, DONG X B, et al. Site energy distribution analysis of Cu (Ⅱ) adsorption on sediments and residues by sequential extraction method[J]. Environmental Pollution, 2016, 208:450-457.
    [25] GIMBERT F, MORIN-CRINI N, RENAULT F, et al. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system:error analysis[J]. Journal of Hazardous Materials, 2008, 157(1):34-46.
    [26] KUMAR K V, DE CASTRO M M, MARTINEZ-ESCANDELL M, et al. A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces[J]. Physical Chemistry Chemical Physics, 2011, 13(13):5753-5759.
    [27] WANG X L, SATO T, XING B S. Sorption and displacement of pyrene in soils and sediments[J]. Environmental Science & Technology, 2005, 39(22):8712-8718.
    [28] KUMAR K V, SERRANO-RUIZ J C, SOUZA H K S, et al. Site energy distribution function for the sips isotherm by the condensation approximation method and its application to characterization of porous materials[J]. Journal of Chemical & Engineering Data, 2011, 56(5):2218-2224.
    [29] SHEN X F, GUO X Y, ZHANG M, et al. Sorption mechanisms of organic compounds by carbonaceous materials:Site energy distribution consideration[J]. Environmental Science & Technology, 2015, 49(8):4894-4902.
    [30] KUMAR K V, MONTEIRO DE CASTRO M C, MARTINEZ-ESCANDELL M, et al. Adsorption on heterogeneous surfaces:Site energy distribution functions from Fritz-Schlüender isotherms[J]. ChemPhysChem, 2010, 11(12):2555-2560.
    [31] VAN NOORT P. Gibbs free energies for dual langmuir-like adsorption onto hard carbon materials in sediment and soils[J]. Environmental Toxicology and Chemistry, 2006, 25(12):3125-3132.
    [32] UMPLEBY R J, BAXTER S C, RAMPEY A M, et al. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers[J]. Journal of Chromatography B, 2004, 804(1):141-149.
    [33] TOTH J. Adsorption[M]. Boca Raton:CRC Press, 2002, 110.
    [34] DONNET J B, CUSTODÉRO E, WANG T K, et al. Energy site distribution of carbon black surfaces by inverse gas chromatography at finite concentration conditions[J]. Carbon, 2002, 40(2):163-167.
    [35] SHIM W G, LEE J W, MOON H. Heterogeneous adsorption characteristics of volatile organic compounds (VOCs) on MCM-48[J]. Separation Science and Technology, 2006, 41(16):3693-3719.
    [36] 钱焕群, 李保瑞, 张林华. CO2、CH4在全硅MFI和MFI (2Na+)沸石吸附的分子模拟[J]. 离子交换与吸附, 2011, 27(6):546-554.

    QIAN H Q, LI B R, ZHANG L H. Molecular simulation of CO2, CH4 adsorption in all-silica MFI and MFI (2Na+) zeolites[J]. Ion Exchange and Adsorption, 2011, 27(6):546-554(in Chinese).

    [37] 罗沛, 孙红文, 张鹏. pH和Ni2+对人工纳米氧化硅吸附菲的影响[J]. 环境科学, 2012, 33(8):2882-2888.

    LUO P, SUN H W, ZHANG P. Effects of pH and Ni2+ on sorption behavior of phenanthrene on engineered nano-silica[J]. Environmental Science, 2012, 33(8):2882-2888(in Chinese).

    [38] TSUTSUMI K, MITANI Y, TAKAHASHI H. Estimation of heat of adsorption from energy distribution on heterogeneous surfaces by a theoretical analysis of adsorption process[J]. Colloid & Polymer Science, 1985, 263(10):832-837.
    [39] TSUTSUMI K, MITANI Y, TAKAHASHI H. Evaluation of energy distribution on a heterogeneous surface from heat of adsorption and its application to the ammonia/Na-Y zeolite system[J]. Colloid & Polymer Science, 1985, 263(10):838-841.
    [40] WU X Q, XIAO B D, LI R H, et al. Mechanisms and factors affecting sorption of microcystins onto natural sediments[J]. Environmental Science & Technology, 2011, 45(7):2641-2647.
    [41] LIU F F, FAN J L, WANG S G, et al. Adsorption of natural organic matter analogues by multi-walled carbon nanotubes:Comparison with powdered activated carbon[J]. Chemical Engineering Journal, 2013, 219:450-458.
    [42] LI H B, ZHANG D, HAN X Z, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes:pH dependence and thermodynamics[J]. Chemosphere, 2014, 95:150-155.
    [43] ABDUL G, WANG P, ZHANG D, et al. Adsorption of diethyl phthalate on carbon nanotubes:pH dependence and thermodynamics[J]. Environmental Engineering Science, 2015, 32(2):103-110.
    [44] GHAFFAR A, YOUNIS M N. Interaction and thermodynamics of methylene blue adsorption on oxidized multi-walled carbon nanotubes[J]. Green Processing and Synthesis, 2015, 4(3):209-217.
    [45] FAULKNER B R, OLIVAS Y, WARE M W, et al. Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment[J]. Water Research, 2010, 44(9):2725-2734.
    [46] 李克斌, 刘广深, 刘维屏. 酰胺类除草剂在土壤上吸附的位置能量分布分析[J]. 土壤学报, 2003, 40(4):574-580.

    LI K B, LIU G S, LIU W P. Site-energy distribution analysis for adsorption of selected acetanilide herbicides in soils[J]. Acta Pedologica Sinica, 2003, 40(4):574-580(in Chinese).

    [47] 吴颖虹, 汪磊, 商博东, 等. 吸附态壬基酚对菲吸附的影响及位点能量分布分析[J]. 环境化学, 2009, 28(3):334-338.

    WU Y H, WANG L, SHANG B D, et al. Site energy distribution analysis for effect of sorbed nonylphen ol on sorption of phenanthrene[J]. Environmental Chemistry, 2009, 28(3):334-338(in Chinese).

    [48] SHI H, SUN Y P, ZHAO X G, et al. Influence on sorption property of Pb by fractal and site energy distribution about sediment of Yellow River[J]. Procedia Environmental Sciences, 2013, 18:464-471.
    [49] WANG F Y, CHEN J S, FORSLING W. Modeling sorption of trace metals on natural sediments by surface complexation model[J]. Environmental Science & Technology, 1997, 31(2):448-453.
    [50] HO Y S, MCKAY G. Application of kinetic models to the sorption of copper(Ⅱ) on to peat[J]. Adsorption Science&Technology,2002,20(8):797-815.
    [51] FLOGEAC K, GUILLON E, APLINCOURT M. Competitive sorption of metal ions onto a north-eastern France soil:Isotherms and XAFS studies[J]. Geoderma, 2007, 139:180-189.
  • 加载中
计量
  • 文章访问数:  2102
  • HTML全文浏览数:  2007
  • PDF下载数:  271
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-15
  • 刊出日期:  2017-11-15
黄丽敏, 靳强, 杨斌, 朱学远. 位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用[J]. 环境化学, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506
引用本文: 黄丽敏, 靳强, 杨斌, 朱学远. 位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用[J]. 环境化学, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506
HUANG Limin, JIN Qiang, YANG Bin, ZHU Xueyuan. Site energy distribution theory and its applications in the adsorption of contaminants in soils and sediments[J]. Environmental Chemistry, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506
Citation: HUANG Limin, JIN Qiang, YANG Bin, ZHU Xueyuan. Site energy distribution theory and its applications in the adsorption of contaminants in soils and sediments[J]. Environmental Chemistry, 2017, 36(11): 2424-2433. doi: 10.7524/j.issn.0254-6108.2017031506

位点能量分布理论及其在土壤和沉积物对污染物吸附研究中的应用

  • 1. 上海交通大学环境科学与工程学院, 上海, 200240
基金项目:

国家自然科学基金(21476139),国家水体污染控制与治理科技重大专项(2014ZX07204-008)和上海交通大学PRP项目(T160PRP31010)资助.

摘要: 位点能量分布理论(Site energy distribution theory,SEDT)是一种从能量的角度去研究吸附机理的理论方法,它可以提供吸附剂表面位点的吸附能量以及对应的分布函数.因此SEDT在吸附能不均匀的吸附剂表面上的应用有着独特的优势.该理论在化学化工领域的吸附剂材料上有着广泛的应用,尤其是在碳材料上有着较为深入的研究.土壤和沉积物是环境中重要的天然吸附剂,有着比碳材料表面更复杂的特性,因此已有研究将SEDT用于土壤和沉积物对污染物的吸附过程中.然而现有的研究在污染物对象的选取以及该理论的应用方式上存在一定的局限性.鉴于SEDT在土壤和沉积物上的应用潜能及重要意义,本文详细地介绍了SEDT的主要内容,并综述了SEDT在国内外吸附领域的应用研究进展,旨在将化学化工领域已有的SEDT应用与讨论方式迁移到环境领域中,最后对SEDT在土壤和沉积物上更深入的应用以及SEDT自身的发展提出了展望.

English Abstract

参考文献 (51)

返回顶部

目录

/

返回文章
返回