钾盐沉积V2O5-WO3/TiO2催化剂的制备及再生
Preparation and regeneration of V2O5-WO3/TiO2 catalyst with potassium salt deposition
-
摘要: 采用浸渍法制备钾盐沉积V2O5-WO3/TiO2催化剂,利用BET、FESEM、XRD和激光拉曼对催化剂进行表征.通过分析催化剂活性与理化性质,来考察钾盐沉积对V2O5-WO3/TiO2 SCR催化剂脱硝活性的影响.考察了中毒前后、不同的再生方法和测试时间对氨气选择性催化还原NO的影响.结果表明,钾盐沉积的V2O5-WO3/TiO2催化剂随着钾盐溶液浓度的增加中毒能力越强.不同的再生方法使得钾盐沉积V2O5-WO3/TiO2催化剂的脱硝活性均有不同程度的提高.整体来说,水洗酸洗加钒的再生催化剂脱硝效率可以恢复到98%、99%左右.
-
关键词:
- 钾盐沉积 /
- V2O5-WO3/TiO2 /
- 浸渍法 /
- 再生 /
- 催化脱硝
Abstract: Potassion salts deposited V2O5-WO3/TiO2 catalysts were prepared by impregnation, and the obtained catalysts were characterized by BET, FESEM, XRD and Raman spectroscopy. The effect of K deposition on the performances of V2O5-WO3/TiO2 catalyst for the selective catalytic reduction of NO by NH3 was investigated. The effects of poisoning, regeneration method and test time on SCR of NO with ammonia were investigated. The results showed that the poisoning effect of the V2O5-WO3/TiO2 catalyst by K deposition increased with the potassium concentration. The denitration activity of K depositioned V2O5-WO3/TiO2 catalysts improved to different degrees by different regeneration methods. On the whole, denitration efficiency of the regenerated catalysts by water wash, acid wash and vanadium addition could reach 98% and 99%.-
Key words:
- K deposition /
- V2O5-WO3/TiO2 /
- impregnation /
- regeneration /
- catalytic denitration
-
-
[1] EIGENMANN F M, BAIKERr A. Selective reduction of NO by NH3 over manganese-cerium mixed oxides: Relation between adsorption, redox and catalytic behavior[J]. Appl Catal B: Environment, 2006, 62: 311-3l8. [2] 国家环境保护部. GB 13223-2011, 火电厂大气污染物排放标准[S].北京: 中国环境科学出版社, 2011. State Environmental Protection Department. GB13223-2011, Emission standard for air pollutants in thermal power plants[S]. Beijing: China Environmental Science Press, 2011 (in Chinese).
[3] SUN B F, ZHAO H, LI Y Z, et al. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands[J]. Journal of Integrative Agriculture, 2016,15(2):440-450. [4] FORZATTI P. Present status and perspectives in de-NOx SCR catalysis [J]. Applied Catalysis A: General, 2001, 222:221-236. [5] 王宝冬,汪国高,刘斌,等.选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(S1):133-139. WANG B D, WANG G G, LIU B, et al. Advances in deactivation, failure prevention, regeneration and recycling of selective catalytic reduction denitration catalysts [J]. Chemical Progress, 2013, 32(S1): 133-139(in Chinese).
[6] ZHENG Y J, JENSEN A D, JOHNSSON J E, et al. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by ab-and pilot-scale experiments[J]. Applied Catalysis B: Environmental, 2008, 83:186-194. [7] PENG Y, Li J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3:an experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46:2864-2869. [8] PENG Y, LI J H, HUANG X, et al. Deactivation mechanism of potassium on the V2O5/CeO2 catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx[J]. Environmental Science & Technology, 2014, 48:4515-4520. [9] 周学荣,张晓鹏.SCR 催化剂碱(土)金属中毒的研究进展[J].化学通报, 2015, 78(7):590-596. ZHOU X R, ZHANG X P. Research progress of SCR catalyst alkali (soil) metal poisoning[J]. Chemical Bulletin, 2015, 78 (7): 590-596(in Chinese).
[10] KHODAYARI R, ODENBRAND C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants[J]. Applied Catalysis B: Environmental, 2001, 30:87-99. [11] ZHENG Y J, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43: 941-947. [12] 白伟,赵冬梅,肖雨亭.失活 SCR 脱硝催化剂化学清洗再生技术研究[J].中国电力, 2015, 48(4):6-10. BAI W, ZHAO D M, XIAO Y T. Study on chemical cleaning and regeneration technology of inactivated SCR denitration catalyst [J]. China Electric Power, 2015, 48 (4): 6-10(in Chinese).
[13] 李想, 李俊华, 何煦, 等.烟气脱硝催化剂中毒机制与再生技术[J].化工进展, 2015, 34(12):4129-4138. LI X, Li J H, He X, et al. Flue gas denitration catalyst poisoning mechanism and regeneration technology [J]. Chemical Progress, 2015, 34 (12): 4129-4138(in Chinese).
[14] LEE J B, KIM S K, KIM D W, et al. Effect of H2SO4 concentration in washing solution on regeneration of commercial selective catalytic reduction catalyst[J]. Korean Chemical Engineering Research, 2012, 29(2):270-276. [15] KAMJANAKOM S, BAYU A., HAO X G, et al. Selectively catalytic upgrading of bio-oil to aromatic hydrocarbons over Zn, Ce or Ni-doped mesoporous rod-like alumina catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2016, 421: 235-244. [16] ZHANG Y P,WANG L F,LI J,et al. Promotional roles of ZrO2 and WO3 in V2O5-WO3/TiO2-ZrO2 catalysts for NOx reduction by NH3: Catalytic performance, morphology, and reaction mechanism[J]. Chinese Journal Of Catalysis, 2016, 37(11):1918-1930. [17] 鲍强. Ce-Si改性的新型V2O5/TiO2催化剂高效抗碱金属中毒试验研究[D]. 杭州:浙江大学, 2015. BAO Q. Experimental study on the effect of Ce-Si modified new V2O5/TiO2 [18] RAVICHANDRAN L, SELVAM K, KRISHNAKUMAR B, et al. Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2 [J]. Journal of hazardous materials, 2009, 167(1): 763-769. [19] WANG C,LI X D,YUAN Y, et al. Effects of sintering temperature on sensing properties of V2O5-WO3-TiO2 electrode for potentiometric ammonia sensor[J]. Sensors and Actuators B-Chemical, 2017, 241:268-275. [20] 商雪松, 陈进生, 赵金平, 等. SCR脱硝催化剂失活及其原因研究[J]. 燃料化学学报, 2011, 39(6):465-470. SHANG X S, CHEN J S, ZHAO J P, et al. Study on deactivation of SCR denitration catalyst and its causes [J]. Journal of Fuel Chemistry, 2011, 39 (6):465-470(in Chinese).
[21] MA L J, GUO L J. Study of the phase transformation of TiO2 with in-situ XRD in different gas[J]. Spectroscopy And Spectral Analysis,2011, 31(4):1133-1137. [22] MOSTAGHNI F, ABED Y.Structural determination of Co/TiO2 nanocomposite: XRD technique and simulation analysis[J]. Materials Science-Poland, 2016, 34(3):534-539. [23] LIU L J, HE Y L, ZHAO H L, ANDINO J M, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry [J]. ACS Catalysis, 2012, 2(8): 1817-1828. [24] KAPIAN R, ERJAVEC B, DRAZIC G, et al. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants [J]. Applied Catalysis B: Environmental, 2016, 181:465-474. [25] YAO X J,ZHAO R D,CHEN L, et al. Selective catalytic reduction of NO<i>x by NH3 over CeO2 supported on TiO2:comparison of anatase,brookite,and rutile [J]. Applied Catalysis B: Environmental, 2017, 208: 82-93. -

计量
- 文章访问数: 1296
- HTML全文浏览数: 1269
- PDF下载数: 309
- 施引文献: 0