三种人工湿地填料对低浓度氨氮废水的吸附特性

刘莹, 刘晓晖, 张亚茹, 王炜亮. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913
引用本文: 刘莹, 刘晓晖, 张亚茹, 王炜亮. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913
LIU Ying, LIU Xiaohui, ZHANG Yaru, WANG Weiliang. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913
Citation: LIU Ying, LIU Xiaohui, ZHANG Yaru, WANG Weiliang. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913

三种人工湿地填料对低浓度氨氮废水的吸附特性

  • 基金项目:

    山东师范大学研究生科研创新基金(SCX201737)和国家自然科学基金(41672340)资助.

Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers

  • Fund Project: Supported by Graduate Research Innovation Foundation (SCX201737) and the National Natural Science Foundation of China (41672340).
  • 摘要: 以沸石、陶粒、火山岩为试验材料,分别考察了不同初始氨氮浓度、pH、共存金属阳离子、温度对填料吸附氨氮的影响,并采用了吸附等温线、动力学和热力学对吸附过程进行解析.结果表明,Langmuir方程与Freundlich方程均能较好地描述氨氮在3种填料上的等温吸附行为.3种填料对氨氮的最大吸附量分别为0.9625 mg·g-1(沸石)、0.8643 mg·g-1(火山岩)和0.6928 mg·g-1(陶粒).Freundlich方程中,1/n 4+的唯一控速步骤,吸附过程可能受到内扩散和表面吸附的共同影响.pH值介于6—9之间时,对氨氮有较好的去除效果.共存阳离子对氨氮的吸附具有抑制作用,具体表现为Al3+ > Mg2+ > Na+ > Ca2+.等温解吸试验表明,陶粒对氨氮的吸附以物理作用为主,而沸石和火山岩以离子交换为主.
  • 加载中
  • [1] WANG H, ZHAO D, ZHONG H, et al. Adsorption performance of four substrates in constructed wetlands for nitrogen and phosphorus removal [J]. Nature Environment and Pollution Technology, 2017, 16(2): 385-392.
    [2] 罗仙平, 李建昌, 严群, 等. 处理低浓度氨氮废水吸附材料的筛选[J]. 化工学报, 2010, 61(1): 216-222.

    LUO X P, LI J C, YAN Q, et al. Screening of optimum adsorbents for treating wastewater containing low concentration ammonia-nitrogen [J]. Journal of Chemical Industry and Engineering (China), 2010, 61(1): 216-222 (in Chinese).

    [3] MILADINOVIC N, WEATHERLEY L R. Intensification of ammonia removal in a combined ion-exchange and nitrification column [J]. Chemical Engineering Journal, 2008, 135(1): 15-24.
    [4] 刘炎, 石小荣, 崔益斌, 等. 高浓度氨氮胁迫对纤细裸藻的毒性效应[J]. 环境科学, 2013, 34(11): 4386-4391.

    LIU Y, SHI X R, CUI Y B, et al. Toxic effects of high concentrations of ammonia on euglena gracilis [J]. Environmental Science, 2013, 34(11): 4386-4391 (in Chinese).

    [5] 吴奇. 承德沸石处理氨氮废水研究[D]. 兰州:兰州理工大学, 2006. WU Q. Research on removing ammonia nitrogen in wastewater using Chengde zeolite [D]. Lanzhou:Lanzhou Gansu University of Technology, 2006 (in Chinese).
    [6] 鲁璐, 祁贵生, 王焕. 低浓度氨氮废水处理实验研究[J]. 化工中间体, 2013,10(1): 42-46.

    LU L, QI G S, WANG H. Experimental study on treatment of low concentrated ammonia-nitrogen wastewater [J]. Chemical Intermediates, 2013, 10(1): 42-46 (in Chinese).

    [7] 吴百力. 高浓度氨氮废水处理技术及其发展趋势[J]. 环境保护科学, 2006, 32(2): 22-24.

    WU B L. Treatment technology and development tendency of high concentration wastewater contained ammonia nitrogen [J]. Environ Protec Sci, 2006, 32(2): 22-24 (in Chinese).

    [8] LIPING W, GUOPING C A O, XIAOHONG Z. Research advance in technology of treating ammonia-nitrogen wastewater [J]. J. Chemical Propellants & Polymeric Materials, 2009, 7(3): 26-31.
    [9] COUTO R S P, OLIVEIRA A F, GUARIO A W S, et al. Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate [J]. Environmental Technology, 2017, 38(7): 816-826.
    [10] QING T, HAOMING W, LIMING S. Study on reaction mechanism and experiment of high concentration ammonia nitrogen removal by chemical precipitation [J]. Environmental Science and Management, 2009, 34(8): 86-89.
    [11] KHIN T, ANNACHHATRE A P. Novel microbial nitrogen removal processes [J]. Biotechnology Advances, 2004, 22(7): 519-532.
    [12] 王霞, 何成达, 赵锦辉. 氮素在人工湿地基质中分布研究[J]. 江苏环境科技, 2006, 19(6): 20-24.

    WANG X, HE C D, ZHAO J H. Study on nitrogen distribution in constructed wetland's soil [J]. Jiangsu Environmental Science and Technology, 2006, 19(6): 20-24 (in Chinese).

    [13] LU S, ZHANG X, WANG J, et al. Impacts of different media on constructed wetlands for rural household sewage treatment [J]. Journal of Cleaner Production, 2016, 127: 325-330.
    [14] PELISSARI C, ÁVILA C, TREIN C M, et al. Nitrogen transforming bacteria within a full-scale partially saturated vertical subsurface flow constructed wetland treating urban wastewater[J]. Science of the Total Environment, 2017, 574: 390-399.
    [15] CALHEIROS C S C, RANGEL A O S S, CASTRO P M L. Evaluation of different substrates to support the growth of Typha latifolia in constructed wetlands treating tannery wastewater over long-term operation [J]. Bioresource Technology, 2008, 99(15): 6866-6877.
    [16] 赵丹, 王曙光, 栾兆坤, 等. 改性斜发沸石吸附水中氨氮的研究[J]. 环境化学, 2003, 22(1): 59-63.

    ZHAO D, WANG S G, LUAN Z K, et al. Study on the ammonia removal from water using remodeled clinoptilolite [J]. Environmental Chemistry, 2003, 22(1): 59-63 (in Chinese).

    [17] DRIZO A, FROST C A, GRACE J, et al. Phosphate and ammonium distribution in a pilot-scale constructed wetland with horizontal subsurface flow using shale as a substrate [J]. Water Research, 2000, 34(9): 2483-2490.
    [18] HOWELL C J, CROHN D M, OMARY M. Simulating nutrient cycling and removal through treatment wetlands in arid/semiarid environments[J]. Ecological Engineering, 2005, 25(1): 25-39.
    [19] 金相灿, 贺凯, 卢少勇, 等. 4 种填料对氨氮的吸附效果[J]. 湖泊科学, 2008, 20(6): 755-760.

    JIN X C, HE K, LU S Y, et al. Adsorption effect of ammonia by four fillings [J]. Journal of Lake Sciences, 2008, 20(6): 755-760 (in Chinese).

    [20] BALCI S, DINÇEL Y. Ammonium ion adsorption with sepiolite: use of transient uptake method [J]. Chemical Engineering and Processing: Process Intensification, 2002, 41(1): 79-85.
    [21] SHI P, JIANG Y, ZHU H, et al. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands [J]. Water Science and Technology, 2017, 76(4):232-241.
    [22] ZHANG D, GERSBERG R M, KEAT T S. Constructed wetlands in China [J]. Ecological Engineering, 2009, 35(10): 1367-1378.
    [23] SONG Z, ZHENG Z, LI J, et al. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China [J]. Ecological Engineering, 2006, 26(3): 272-282.
    [24] 卢少勇, 桂萌, 余刚, 等. 人工湿地中沸石和土壤的氮吸附与再生试验研究[J]. 农业工程学报, 2006, 22(11): 64-68.

    LU S Y, GUI M, YU G, et al. Nitrogen adsorption and reactivation of zeolite and soil in constructed wetland [J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(11): 64-68 (in Chinese).

    [25] CHEN L, CHEN X L, ZHOU C H, et al. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate [J]. Journal of Cleaner Production, 2017, 156: 648-659.
    [26] 国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration of China, Editorial Committee for monitoring and analysis of water and wastewater. Standard methods for the examination of water and waste water [M]. Beijing: China Environment Science Press, 2002 (in Chinese).
    [27] 李晔, 王建兵, 肖文浚, 等. 沸石去除水源中低浓度氨氮的实验研究[J]. 武汉理工大学学报, 2003, 25(2): 4-6.

    LI Y, WANG J B, XIAO W J, et al. The experimental study of removing low concentration of ammonia nitrogen from the water source by zeolites [J]. Journal of Wuhan University of Technology, 2003, 25(2): 4-6 (in Chinese).

    [28] 李文静, 李军, 张彦灼, 等. NaCl改性沸石对水中氨氮的吸附机制[J]. 中国环境科学, 2016, 36(12): 3567-3575.

    LI W J, LI J, ZHANG Y Z, et al. Adsorption mechanism of ammonium from aqueous solutions by NaCl modified zeolite [J]. China Environmental Science, 2016, 36(12): 3567-3575 (in Chinese).

    [29] SUQAHARA H, TAKANO Y, OGAWA N O, et al. Nitrogen isotopic fractionation in ammonia during adsorption on silicate surfaces [J]. ACS Earth and Space Chemistry, 2017, 1(1): 24-29.
    [30] TANSEL B, SAGER J, RECTOR T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes [J]. Separation and Purification Technology, 2006, 51(1): 40-47.
    [31] HUANG H, XIAO X, YAN B, et al. Ammonium removal from aqueous solutions by using natural chinese (chende) zeolite as adsorbent[J]. Journal of Hazardous materials, 2010, 175(1): 247-252.
    [32] POZO-MORALES L, FRANCO M, Garvi D, et al. Experimental basis for the design of horizontal subsurface-flow treatment wetlands in naturally aerated channels with an anti-clogging stone layout [J]. Ecological Engineering, 2014, 70: 68-81.
    [33] 马锋锋, 赵保卫, 刁静茹, 等. 牛粪生物炭对水中氨氮的吸附特性[J]. 环境科学, 2015, 36(5): 1678-1685.

    MA F F, ZHAO B W, DIAO J R, et al. Ammonium adsorption characteristics in aqueous solution by dairy manure biochar [J]. Environmental Science, 2015, 36(5): 1678-1685 (in Chinese).

    [34] GUAVA D, VALDERRAMA C, FARRAN A, et al. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite[J]. Chemical Engineering Journal, 2015, 271: 204-213.
    [35] ZHANG M, ZHANG H, XU D, et al. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method[J]. Desalination, 2011, 271(1): 111-121.
    [36] ARAMI M, LIMAEE N Y, MAHMOODI N M. Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent [J]. Chemical Engineering Journal, 2008, 139(1): 2-10.
    [37] YANG J, WANG S, LU Z, et al. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants [J]. Journal of Hazardous Materials, 2009, 168(1): 331-337.
  • 加载中
计量
  • 文章访问数:  1511
  • HTML全文浏览数:  1462
  • PDF下载数:  486
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-29
  • 刊出日期:  2018-05-15
刘莹, 刘晓晖, 张亚茹, 王炜亮. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913
引用本文: 刘莹, 刘晓晖, 张亚茹, 王炜亮. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913
LIU Ying, LIU Xiaohui, ZHANG Yaru, WANG Weiliang. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913
Citation: LIU Ying, LIU Xiaohui, ZHANG Yaru, WANG Weiliang. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913

三种人工湿地填料对低浓度氨氮废水的吸附特性

  • 1.  山东师范大学地理与环境学院, 济南, 250358;
  • 2.  清华大学环境学院, 北京, 100084;
  • 3.  山东师范大学环境与生态研究院, 济南, 250358
基金项目:

山东师范大学研究生科研创新基金(SCX201737)和国家自然科学基金(41672340)资助.

摘要: 以沸石、陶粒、火山岩为试验材料,分别考察了不同初始氨氮浓度、pH、共存金属阳离子、温度对填料吸附氨氮的影响,并采用了吸附等温线、动力学和热力学对吸附过程进行解析.结果表明,Langmuir方程与Freundlich方程均能较好地描述氨氮在3种填料上的等温吸附行为.3种填料对氨氮的最大吸附量分别为0.9625 mg·g-1(沸石)、0.8643 mg·g-1(火山岩)和0.6928 mg·g-1(陶粒).Freundlich方程中,1/n 4+的唯一控速步骤,吸附过程可能受到内扩散和表面吸附的共同影响.pH值介于6—9之间时,对氨氮有较好的去除效果.共存阳离子对氨氮的吸附具有抑制作用,具体表现为Al3+ > Mg2+ > Na+ > Ca2+.等温解吸试验表明,陶粒对氨氮的吸附以物理作用为主,而沸石和火山岩以离子交换为主.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回