抗生素抗性基因在养殖废水中的分布与去除
Distribution and removal of antibiotic resistance genes in swine wastewater
-
摘要: 畜禽养殖场作为抗生素抗性基因的一个热点区,其产生的废水中存在大量的抗生素抗性基因,直接排放将会污染接受的水体.本研究以微生物固化曝气技术为核心,构建了一个包含沉淀池、一级处理池、二级处理池和氧化塘的养殖废水处理系统.采用高通量荧光定量PCR技术,探究各种抗性基因在进水、各处理池和出水中的种类、多样性和丰度的变化以及可能的影响因素.研究发现:(1)微生物固化曝气技术能有效降低养殖废水中抗性基因的种类和多样性;(2)该技术也能有效去除养殖废水中抗性基因的绝对丰度,去除率高达93.6%;(3)养殖废水出水中抗性基因绝对丰度仍高于自然水体,其直接排放仍有抗性基因污染风险;(4)畜禽养殖废水中TN和土霉素的含量与许多抗生素抗性基因总丰度存在正相关性.通过对TN和土霉素的去除或者控制使用,可以有效降低养殖废水中的抗性基因.Abstract: Livestock and poultry farms are one of hot spots of antibiotic resistance genes (ARGs), as the direct discharge of swine wastewater containing a large number of ARGs may pollute the natural water. Using the integrated immobilized-microorganism and aeration technology, the present research built a swine wastewater treatment system consisting of a sedimentation pool, a primary treatment pool, a secondary treatment pool, and an oxidation pond. High-throughput quantitative PCR was utilized to investigate the variation (e.g. occurrence, diversity and removal rate) and possible influencing factors of ARGs in the influent, effluent and each treatment unit. The results indicate that:(1) The integrated technology effectively reduced the varieties and diversities of ARGs; (2) It also removed efficiently the abundance of ARGs with a total removal rate of 93.6%; (3) The absolute abundance of ARGs in the effluents was still higher than that in the natural water, and their direct discharge may pose a risk of ARGs to the natural water; (4) The concentration of total nitrogen and oxytetracycline positively correlated to the absolute abundance of ARGs. By the removal and/or controlled use of total nitrogen and oxytetracycline, the integrated technology removed effectively the ARGs in swine wastewater.
-
[1] CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal of Environmental Quality, 2009, 38(3):1086-1108. [2] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5):725-759. [3] 罗义,周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物[J]. 环境科学学报,2008, 28(8):1499-1505. LUO Y, ZHOU Q X. Antibiotic resistance genes (ARGs) as emerging pollutants[J]. Acta Scientiae Circumstantiae, 2008, 28(8):1499-1505(in Chinese).
[4] 苏建强,黄福义,朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性,2013, 21(4):481-487. SU J Q, HUANG F Y, ZHU Y G. Antibiotic resistance genes in the environment[J]. Biodiversity Science, 2013, 21(4):481-487(in Chinese).
[5] LOOFT T, JOHNSON T A, ALLEN H K, et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proceedings of the National Academy of Sciences, 2012, 109(5):1691-1696. [6] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450. [7] 史海安. 重视抗生素在外科应用中存在的问题[J]. 腹部外科,2000, 13(3):131. SHI H A. Emphasis on the problem of antibiotics in surgical applications[J]. Journal of Abdominal Surgery, 2000 , 13(3):131(in Chinese).
[8] 庄榆佳,高阳俊,邓玉君,等. 微生物固化曝气技术对养殖废水的深度处理[J]. 环境化学,2015,34(7):1356-1362. ZHUANG Y J, GAO Y J, DENG Y J, et al. Advanced treatment of swine wastewater by the immobilized-microorganism and aeration technology[J]. Environmental Chemistry, 2015, 34(7):1356-1362(in Chinese).
[9] SU J Q, WEI B, OUYANY W Y, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting[J]. Environmental Science & Technology, 2015, 49(12):7356-7363. [10] CHEN Q, AN X, LI H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92:1-10. [11] OUYANG W Y, HUANG F Y, ZHAO Y, et al. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China[J]. Applied Microbiology and Biotechnology, 2015, 99(13):5697-5707. [12] 黄福义,李虎,韦蓓,等. 长期施用猪粪水稻土抗生素抗性基因污染研究[J]. 环境科学,2014, 35(10):3869-3873. HUANG F Y, LI H, WEI B, et al. Long-term manure application induced shift of diversity and abundance of antibiotic resistance genes in paddy soil[J]. Environmental Science, 2014, 35(10):3869-3873(in Chinese).
[13] 黄福义,安新丽,陈青林,等. 梅花鹿养殖场抗生素抗性基因分布特征[J]. 环境科学,2016, 37(11):4402-4409. HUANG F Y, AN X L, CHEN Q L, et al. Distribution characteristics of antibiotic resistance genes in sika deer farm[J]. Environmental Science, 2016, 37(11):4402-4409(in Chinese).
[14] ALLEN H K, DONATO J, WANG H H, et al. Call of the wild:Antibiotic resistance genes in natural environments[J]. Nature Reviews Microbiology, 2010, 8(4):251-259. [15] FORSBERG K J, PATEL S, GIBSON M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014, 509(7502):612-616. [16] 梁惜梅,聂湘平,施震. 珠江口典型水产养殖区抗生素抗性基因污染的初步研究[J]. 环境科学,2013, 34(10):4073-4080. LIANG X M, NIE X P, SHI Z. Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the pearl river estuary[J]. Environmental Science, 2013, 34(10):4073-4080(in Chinese).
[17] WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 2010, 44(18):6933-6939.
计量
- 文章访问数: 1376
- HTML全文浏览数: 1261
- PDF下载数: 221
- 施引文献: 0