亚铁离子/四聚磷酸活化分子氧降解氯霉素

余洁, 原弘. 亚铁离子/四聚磷酸活化分子氧降解氯霉素[J]. 环境化学, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005
引用本文: 余洁, 原弘. 亚铁离子/四聚磷酸活化分子氧降解氯霉素[J]. 环境化学, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005
YU Jie, YUAN Hong. Dioxygen activation by Fe(Ⅱ)-Tetrapolyphosphate(TPP) complex for the degradation of chloramphenicol[J]. Environmental Chemistry, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005
Citation: YU Jie, YUAN Hong. Dioxygen activation by Fe(Ⅱ)-Tetrapolyphosphate(TPP) complex for the degradation of chloramphenicol[J]. Environmental Chemistry, 2017, 36(11): 2304-2310. doi: 10.7524/j.issn.0254-6108.2017031005

亚铁离子/四聚磷酸活化分子氧降解氯霉素

  • 基金项目:

    国家自然科学基金(21277055)和中央高校基本科研业务费专项资金(CCNU16A02003)资助.

Dioxygen activation by Fe(Ⅱ)-Tetrapolyphosphate(TPP) complex for the degradation of chloramphenicol

  • Fund Project: Supported by the National Natural Science Foundation of China (21277055) and the Fundamental Research Funds for the Central Universities (CCNU16A02003).
  • 摘要: 本文研究了亚铁离子(Fe2+)/四聚磷酸(TPP)/空气(Air)体系降解有机污染物氯霉素(CAP)的能力.研究发现,在氩气(Ar)氛围中和用乙二胺四乙酸(EDTA)代替TPP配体后均不能有效降解CAP,只有在Fe2+、TPP、Air共存时才能够有效降解CAP.结合活性氧测试及自由基捕获实验,表明Fe2+/TPP配合物活化分子氧是该体系降解有机污染物的关键,反应过程中生成超氧阴离子自由基(·O2-)和羟基自由基(·OH),其中·OH在CAP降解过程中起主要作用.随着反应的进行,体系中的Fe2+逐渐转化为Fe3+,失去活化分子氧的能力,也不再能够降解CAP.上述降解过程中脱氯量为10%,总有机碳去除率为20%,综合气质联用仪(GC-MS)以及液质联用仪(LC-MS)测得的中间体物种,推测了CAP降解的可能机理.进一步研究表明,在中性及弱碱性条件下该体系对CAP具有较强的降解能力,为其用于CAP污染物的处理提供了可能.
  • 加载中
  • [1] RABIET M, TOGOLA A, BRISSAUD F, et al. Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment[J]. Environmental Science & Technology, 2006, 40(17):5282-5288.
    [2] 刘奇, 魏东斌, 陈振斌,等. 医药品和个人护理用品(PPCPs)类污染物氯化转化行为研究进展[J]. 环境化学, 2012, 31(3):278-286.

    LIU Q, WEI D, CHEN Z, et al. A review on transformation behaviors of PPCPs in chlorination process[J]. Environmental Chemistry, 2012, 31(3):278-286(in Chinese).

    [3] KARTHIK R, KUMAR J, CHEN S, et al. A Study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol[J]. ACS Applied Materials & Interfaces, 2017, 9:6547-6559.
    [4] 李春颖, 赖克强, 张源园,等. 表面增强拉曼光谱检测鱼肉中禁用和限用药物研究[J]. 化学学报, 2013, 71(2):221-226.

    LI C, LAI K, ZHANG Y, et al. Use of surface-enhanced raman spectroscopy for the test of residuals of prohibited and restricted drugs in fish muscle[J]. Acta Chimica Sinica, 2013, 71(2):221-226(in Chinese).

    [5] ZHANG Q, ZHANG Y, LI D. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community[J]. Bioresource Technology, 2017, 229:104-110.
    [6] NIE M, YAN C, LI M, et al. Degradation of chloramphenicol by persulfate activated by Fe2+, and zerovalent iron[J]. Chemical Engineering Journal, 2015, 279:507-515.
    [7] BADAWY M I, WAHAAB R A, ELKALLINY A S. Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater[J]. Journal of Hazardous Materials, 2009, 167(1-3):567-574.
    [8] LOFRANO G, LIBRALATO G, ADINOLFI R, et al. Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects[J]. Ecotoxicology & Environmental Safety, 2016, 123:65-71.
    [9] JOSS A, ZABDZYNSKI S, GOBEL A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment:Proposing a classification scheme[J]. Water Research, 2006, 40(8):1686-1696.
    [10] FAN Y, WANG B, YUAN S H, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal[J]. Bioresource Technology, 2010, 101(19):7661-7664.
    [11] ARSLAN-ALATON I, GURSES F. Photo-Fenton-like and photo-Fenton-like oxidation of procaine Penicillin G formulation effluent[J]. Journal of Photochemistry & Photobiology A Chemistry, 2004, 165(1):165-175.
    [12] TROVO A G, NOGUEIRA R F, AGUERA A, et al. Photodegradation of sulfamethoxazole in various aqueous media:Persistence, toxicity and photoproducts assessment[J]. Chemosphere 2009, 77(10):1292-1298.
    [13] HUG S J, LEUPIN O. Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction[J]. Environmental Science & Technology. 2003, 37(12):2734-2742.
    [14] ARIKAN O A. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves[J]. Journal of Hazardous Materials, 2008, 158(2/3):485-490.
    [15] MENDEZ-DIAZ J D, PRADOS-JOYA G, RIVERA-UTRILLA J, et al. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase[J]. Journal of Colloid & Interface Science, 2010, 345(2):481-490.
    [16] BIAGLOW J E, KACHUR A V. The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion[J]. Radiation Research, 1997, 148(2):181-187.
    [17] WELCH K D, DAVIS T Z, AUST S D. Iron autoxidation and free radical generation:Effects of buffers, ligands, and chelators[J]. Archives of Biochemistry & Biophysics, 2002, 397(2):360-369.
    [18] KEENAN C R, SEDLAK D L. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2011, 42(18):6936-6941.
    [19] WANG L, WANG F, LI P, et al. Ferrous-tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation[J]. Separation & Purification Technology, 2013, 120:148-155.
    [20] WANG L, CAO M, AI Z, et al. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate[J]. Environmental Science & Technology, 2014, 48(6):3354-3362.
    [21] WANG L, CAO M, AI Z, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5):3032-3039.
    [22] DENG J, FENG S F, ZHANG K, et al. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4, for the degradation of chloramphenicol at neutral pH[J]. Chemical Engineering Journal, 2016, 308:505-515.
    [23] JR A E H, SMART J A, AMIS E S. Simultaneous spectrophotometric determination of Iron(Ⅱ) and total iron with 1,10-phenanthroline[J]. Analytical Chemistry, 1955, 27(1):26-29.
    [24] LIU W, AI Z H, CAO M H, et al. Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3, core-shell nanowires[J]. Applied Catalysis B Environmental, 2014, 150-151:1-11.
    [25] SANCHEZ I, STUBER F, FONT J, et al. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure[J]. Chemosphere, 2007, 68(2):338-344.
  • 加载中
计量
  • 文章访问数:  1097
  • HTML全文浏览数:  1030
  • PDF下载数:  344
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-10
  • 刊出日期:  2017-11-15

亚铁离子/四聚磷酸活化分子氧降解氯霉素

  • 1. 农药与化学生物学教育部重点实验室, 华中师范大学化学学院, 武汉, 430079
基金项目:

国家自然科学基金(21277055)和中央高校基本科研业务费专项资金(CCNU16A02003)资助.

摘要: 本文研究了亚铁离子(Fe2+)/四聚磷酸(TPP)/空气(Air)体系降解有机污染物氯霉素(CAP)的能力.研究发现,在氩气(Ar)氛围中和用乙二胺四乙酸(EDTA)代替TPP配体后均不能有效降解CAP,只有在Fe2+、TPP、Air共存时才能够有效降解CAP.结合活性氧测试及自由基捕获实验,表明Fe2+/TPP配合物活化分子氧是该体系降解有机污染物的关键,反应过程中生成超氧阴离子自由基(·O2-)和羟基自由基(·OH),其中·OH在CAP降解过程中起主要作用.随着反应的进行,体系中的Fe2+逐渐转化为Fe3+,失去活化分子氧的能力,也不再能够降解CAP.上述降解过程中脱氯量为10%,总有机碳去除率为20%,综合气质联用仪(GC-MS)以及液质联用仪(LC-MS)测得的中间体物种,推测了CAP降解的可能机理.进一步研究表明,在中性及弱碱性条件下该体系对CAP具有较强的降解能力,为其用于CAP污染物的处理提供了可能.

English Abstract

参考文献 (25)

目录

/

返回文章
返回