醛类污染物的二溴甲烷质子化增强检测

许策, 李震, 张海旭, 束继年. 醛类污染物的二溴甲烷质子化增强检测[J]. 环境化学, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701
引用本文: 许策, 李震, 张海旭, 束继年. 醛类污染物的二溴甲烷质子化增强检测[J]. 环境化学, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701
XU Ce, LI Zhen, ZHANG Haixu, SHU Jinian. Protonation-enhanced sensitive detection of aldehydes via dibromomethane doping[J]. Environmental Chemistry, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701
Citation: XU Ce, LI Zhen, ZHANG Haixu, SHU Jinian. Protonation-enhanced sensitive detection of aldehydes via dibromomethane doping[J]. Environmental Chemistry, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701

醛类污染物的二溴甲烷质子化增强检测

  • 基金项目:

    中国科学院大气灰霾追因与控制战略先导专项(XDB05040501)资助.

Protonation-enhanced sensitive detection of aldehydes via dibromomethane doping

  • Fund Project: Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05040501).
  • 摘要: 低气压光电离(LPPI)是一种在数百到数千Pa的气压条件下工作的新型软电离技术,与质谱结合,检测灵敏度显著优于其他光电离形式,然而受到待测物分子自身电离截面的限制,LPPI-MS对醛类检测的灵敏度较低.本文以乙醛(261.8 gm-3)、正丙醛(666.7 gm-3)和正丁醛(653.4 gm-3)为研究对象,研究了掺杂二溴甲烷对醛类低气压光电离过程的影响,发现在低二溴甲烷浓度条件下,醛类质子化信号随掺杂的二溴甲烷浓度增加而增加,当二溴甲烷浓度为1225.9、1016.4、721.6 mgm-3时,质子化的乙醛、正丙醛和正丁醛信号最高,此时,乙醛、正丙醛和正丁醛的信号分别提高33、60和21倍,相应的灵敏度达230、146、105 counts(gm-3)-1.本文的研究结果为醛类及其它挥发性有机物(VOCs)的高灵敏度检测提供了新的技术方法.
  • 加载中
  • [1] PALMISANO G, YURDAKAL S, AUGUGLIARO V, et al. Photocatalytic selective oxidation of 4-methoxybenzyl alcohol to aldehyde in aqueous suspension of home-prepared titanium dioxide catalyst[J]. Advanced Synthesis & Catalysis,2007, 349(6):964-970.
    [2] [2] DEBRUIN Y B, KOISTINEN K, KEPHALOPOULOS S,et al.Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union[J]. Environmental Science and Pollution Research,2008, 15(5):417-430.
    [3] [3] ALTSHULLER A P, MCPHERSON S. Spectrophotometric analysis of aldehydes in the Los Angeles atmosphere[J].Journal of the Air Pollution Control Association, 1963,13(3):109-111.
    [4] [5] MACGILLIVRAY B H, RICHARDS K.Approaches to evaluating model quality across different regime types in environmental and public health governance[J].Global Environmental Change,2005, 33(2):23-31.
    [5] [6] BENTAYEB M, BILLIONNET C, BAIZ N, et al.Higher prevalence of breathlessness in elderly exposed to indoor aldehydes and VOCs in a representative sample of French dwellings[J]. Respiratory Medicine, 2013,107(10):1598-1607.
    [6] [7] O'BRIEN P J, SIRAKI A G, SHANGARI N.Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health[J].Critical Reviews in Toxicology,2005, 35(7):609-662.
    [7] [8] CHAI Z F, ZHANG Z Y, FENG W Y, et al. Study of chemical speciation of trace elements by molecular activation analysis and other nuclear techniques[J]. Journal of Analytical Atomic Spectrometry, 2004,19:26-33.
    [8] [15] UCHIDA K. Role of reactive aldehyde in cardiovascular diseases[J]. Free Radical Biology and Medicine,2000,28(12):1685-1696.
    [9] [16] MATVEYCHUK D, DURSUN S M, WOOD P L,et al.Reactive aldehydes and neurodegenerative disorders[J]. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology,2011, 21(4):277-288.
    [10] [17] JAGANJAC M, TIROSH O, COHEN G, et al. Reactive aldehydes-second messengers of free radicals in diabetes mellitus[J].Free Radical Research, 2013,47(1):39-48.
    [11] [18] CALESTANI D, MOSCA R, ZANICHELLI M,et al. Aldehyde detection by ZnO tetrapod-based gas sensors[J]. Journal of Materials Chemistry, 2011,21(3):15532-15536.
    [12] [19] SHANNON S K, BARANY G.Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine[J]. Journal of Combinatorial Chemistry, 2004(2):165-170.
    [13] [20] FENG L, MUSTO C J, SUSLICK K S.A simple and highly sensitive colorimetric detection method for gaseous formaldehyde[J]. Journal of The American Chemical Society,2010, 132(12):4046-4047.
    [14] [21] SLEMR J, JUNKERMANN W, VOLZTHOMAS A.Temporal variations in formaldehyde, acetaldehyde and acetone and budget of formaldehyde at a rural site in southern Germany[J].Atmospheric Environment, 1996,30(21):3667-3676.
    [15] [22] WILLIAMS A K, HUPP J T.Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes[J].Journal of The American Chemical Society,1998, 120(18):4366-4371.
    [16] [23] PARIENTE F, LORENZO E, TOBALINA F,et al.Aldehyde biosensor based on the determination of NADH enzymatically generated by aldehyde dehydrogenase[J].Analytical Chemistry,1995, 67(21):3936-3944.
    [17] [24] VESELY P, LUSK L, BASAROVA G,et al.Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2003, 51(24):6941-6944.
    [18] [25] MIYAKE T, SHIBAMOTO T. Quantitative-analysis of acetaldehyde in foods and beverages[J].J Agr Food Chem, 1993,41:1968-1970.
    [19] [26] ALI M F B, KISHIKAWA N, OHYAMA K, et al.Chromatographic determination of aliphatic aldehydes in human serum after pre-column derivatization using 2,2'-furil, a novel fluorogenic reagent[J]. Journal of chromatography A,2013,1300(23) 199-203.
    [20] [28] APREA E, ROMANO A, BETTA E, et al.Volatile compound changes during shelf life of dried Boletus edulis:Comparison between SPME-GC-MS and PTR-ToF-MS analysis[J].Journal of Mass Spectrometry, 2015,50(1):56-64.
    [21] [29] YUAN B, KOSS A, WARNEKE C, et al.A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere[J].Atmospheric Measurement Techniques,2016, 9:2735-2752.
    [22] [30] HANSEL A, JORDAN A, HOLZINGER R, et al.Proton-transfer reaction mass-spectrometry-online trace gas-analysis at the ppb level[J]. International Journal of Mass Spectrometry, 1995,149:609-619.
    [23] [31] HUA L, WU Q, HOU K, CUI H,et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry,2011,83(13):5309-5316.
    [24] [32] RAFFAELLI A, SABA A.Atmospheric pressure photoionization mass spectrometry[J].Mass Spectrometry Reviews,2003, 22(5):318-331.
    [25] [33] SYAGE J A.Mechanism of[M+H]+ formation in photoionization mass spectrometry[J].Journal of the American Society for Mass Spectrometry,2004,15(11):1521-1533.
    [26] [34] SUN W, SHU J, ZHANG P, et al.Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer[J].Atmospheric Measurement Techniques,2015,8:4637-4643.
    [27] [35] LI Z, XU C, SHU J N, et al. Doping-assisted low-pressure photoionization mass spectrometry for the real-time detection of lung cancer-related volatile organic compounds[J]. Talanta,2017, 165:98-106.
    [28] [36] ZIMMERMANN R, WELTHAGEN W, GRÖGER T.Photo-ionisation mass spectrometry as detection method for gas chromatography:Optical selectivity and multidimensional comprehensive separations[J]. Journal of Chromatography A,2008,1184(1):296-308.
    [29] [37] ROBB D B, COVEY T R, BRUINS A P.Atmospheric pressure photoionization:An ionization method for liquid chromatography-mass spectrometry[J]. Analytical Chemistry,2000, 72(15):3653-3659.
    [30] [38] SUN W, LIANG M, LI Z.Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry[J]. Talanta, 2016,156(15):191-195.
    [31] [39] LI Z, XU C, SHU J N. Detection of sub-pptv benzene, toluene, and ethylbenzene via low-pressure photoionization mass spectrometry[J].Analytica Chimica Acta, 2017,964(29):134-141.
    [32] [40] SHU J N, ZOU Y, XU C, et al.Protonation enhancement by dichloromethane doping in low-pressure photoionization[J]. Scientific Reports, DOI:10.1038/srep36820.
    [33] [41] YENCHA A J, SIGGEL K M R, KING G C, et al.Threshold photoelectron spectroscopy of acetaldehyde and acrolein[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013,187:65-71.
    [34] [42] TRAEGER J C. Heat of formation for the formyl cation by photoionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1985,66(3):271-282.
  • 加载中
计量
  • 文章访问数:  1129
  • HTML全文浏览数:  1069
  • PDF下载数:  211
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-27
  • 刊出日期:  2017-12-15
许策, 李震, 张海旭, 束继年. 醛类污染物的二溴甲烷质子化增强检测[J]. 环境化学, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701
引用本文: 许策, 李震, 张海旭, 束继年. 醛类污染物的二溴甲烷质子化增强检测[J]. 环境化学, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701
XU Ce, LI Zhen, ZHANG Haixu, SHU Jinian. Protonation-enhanced sensitive detection of aldehydes via dibromomethane doping[J]. Environmental Chemistry, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701
Citation: XU Ce, LI Zhen, ZHANG Haixu, SHU Jinian. Protonation-enhanced sensitive detection of aldehydes via dibromomethane doping[J]. Environmental Chemistry, 2017, 36(12): 2523-2530. doi: 10.7524/j.issn.0254-6108.2017042701

醛类污染物的二溴甲烷质子化增强检测

  • 1.  环境模拟与污染控制国家重点联合实验室, 中国科学院生态环境研究中心, 北京, 100085;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

中国科学院大气灰霾追因与控制战略先导专项(XDB05040501)资助.

摘要: 低气压光电离(LPPI)是一种在数百到数千Pa的气压条件下工作的新型软电离技术,与质谱结合,检测灵敏度显著优于其他光电离形式,然而受到待测物分子自身电离截面的限制,LPPI-MS对醛类检测的灵敏度较低.本文以乙醛(261.8 gm-3)、正丙醛(666.7 gm-3)和正丁醛(653.4 gm-3)为研究对象,研究了掺杂二溴甲烷对醛类低气压光电离过程的影响,发现在低二溴甲烷浓度条件下,醛类质子化信号随掺杂的二溴甲烷浓度增加而增加,当二溴甲烷浓度为1225.9、1016.4、721.6 mgm-3时,质子化的乙醛、正丙醛和正丁醛信号最高,此时,乙醛、正丙醛和正丁醛的信号分别提高33、60和21倍,相应的灵敏度达230、146、105 counts(gm-3)-1.本文的研究结果为醛类及其它挥发性有机物(VOCs)的高灵敏度检测提供了新的技术方法.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回