塑料表面土霉素的吸附-解吸机制与动力学过程

张凯娜, 李嘉, 李晓强, 张华. 塑料表面土霉素的吸附-解吸机制与动力学过程[J]. 环境化学, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703
引用本文: 张凯娜, 李嘉, 李晓强, 张华. 塑料表面土霉素的吸附-解吸机制与动力学过程[J]. 环境化学, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703
ZHANG Kaina, LI Jia, LI Xiaoqiang, ZHANG Hua. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics[J]. Environmental Chemistry, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703
Citation: ZHANG Kaina, LI Jia, LI Xiaoqiang, ZHANG Hua. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics[J]. Environmental Chemistry, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703

塑料表面土霉素的吸附-解吸机制与动力学过程

  • 基金项目:

    国家重点研发计划重点专项(2016YFC1402202)和中国科学院对外合作重点项目(KYSB20160003)资助.

Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics

  • Fund Project: Supported by National Key R &
  • 摘要: 采用批量平衡实验的方法研究了土霉素(OTC)在聚乙烯(PE)和聚苯乙烯(PS)两种微塑料表面的吸附-解吸特性,通过扫描电镜(SEM)和傅里叶变换衰减全反射红外光谱(ATR-FTIR)探究了吸附机制.结果表明,OTC在两种微塑料表面的吸附量为:PS-纯水 PE-纯水 PS-海水 PE-海水,分别用线性模型、Freundlich模型和Langmuir模型对等温吸附实验数据进行拟合,结果显示Freundlich模型的拟合程度最高,OTC在两种微塑料上的吸附呈现明显的非线性(n=0.25-0.77),吸附位点存在异质性.吸附过程中没有出现新的基团,分子之间的范德华力以及表面微孔填充是OTC吸附的主要机制,微塑料表面存在的褶皱,裂隙等不规则结构提供了OTC吸附位点.微塑料表面OTC吸附动力学是多个过程共同作用的结果,其过程符合准二级动力学模型,吸附速率为0.0037-2.8 gmg-1h-1,颗粒内扩散可能是主要的反应速率控制步骤.解吸实验结果显示,OTC的累积解吸量为:PS-纯水 PE-纯水 PS-海水 PE-海水,解吸过程符合准二级动力学模型.
  • 加载中
  • [1] [2] BAKIR A, ROWLAND S J, THOMPSON R C, et al. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment[J]. Marine Pollution Bulletin, 2012, 64(12):2782-2789.
    [2] [3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):838-838.
    [3] [4] BAKIR A, ROWLAND S J, RICHARD C, et al. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185:16-23.
    [4] [5] ZHAO S Y, ZHU L X, WANG T, et al. Suspended microplastics in the surface water of the Yangtze estuary system, China:First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1-2):562-568.
    [5] [6] LEE J, HONG S, SONG Y K, et al. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea[J]. Marine Pollution Bulletin, 2013, 77(1-2):349-354.
    [6] [8] WRIGHT S L, THOMPSON R C, GALLOWAY T S, et al. The physical impacts of microplastics on marine organisms:A review[J]. Environmental Pollution, 2013, 178:483-492.
    [7] [9] OEHLMANN J, SCHULTE-OEHLMANN U, KLOAS W, et al. A critical analysis of the biological impacts of plasticizers on wildlife[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526):2047-2062.
    [8] [10] TURNER A, HOLMES L A. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 2015, 12(5):600-610.
    [9] [11] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers:Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13):7252-7259.
    [10] [12] PARK J Y, HUWE B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils[J]. Environmental Pollution, 2016, 213:561-570.
    [11] [13] XU X R, LI X Y. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 2010, 78(4):430-436.
    [12] [14] SASSMAN S A, LEE L S. Sorption of three tetracyclines by several soils:Assessing the role of pH and cation exchange[J]. Environmental Science & Technology, 2005, 39(19):7452-7459.
    [13] [15] KULSHRESTHA P, GIESE R F, AGA D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter:Insights on factors affecting its mobility in soil[J]. Abstracts of Papers of the American Chemical Society, 2004, 228:U629-U629.
    [14] [16] GU C, KARTHIKEYAN K G. Interaction of tetracycline with aluminum and iron hydrous oxides[J]. Environmental Science & Technology, 2005, 39(8):2660-2667.
    [15] [17] GU C, KARTHIKEYAN K G, SIBLEY S D, et al. Complexation of the antibiotic tetracycline with humic acid[J]. Chemosphere, 2007, 66(8):1494-1501.
    [16] [18] PILS J R V, LAIRD D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science & Technology, 2007, 41(6):1928-1933.
    [17] [20] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7):1877-1885.
    [18] [21] LALUMERA G M, CALAMARI D, GALLI P, et al. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy[J]. Chemosphere, 2004, 54(5):661-668.
    [19] [23] RABOLLE M, SPLⅡD N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7):715-722.
    [20] [24] WANG F, SHIH K M, LI X Y, et al. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics[J]. Chemosphere, 2015, 119:841-847.
    [21] [25] TURKU I, SAINIO T, PAATERO E. Thermodynamics of tetracycline adsorption on silica[J]. Environmental Chemistry Letters, 2007, 5(4):225-228.
    [22] [28] HARRISON J P, OJEDA J J, ROMERO-GONZALEZ M E. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments[J]. Science of the Total Environment, 2012, 416:455-463.
    [23] [29] BANCHE G, BRACCO P, BISTOLFI A, et al. Vitamin E blended UHMWPE may have the potential to reduce bacterial adhesive ability[J]. Journal of Orthopaedic Research, 2011, 29(11):1662-1667.
    [24] [30] BOEHNING M, NIEBERGALL U, ZANOTTO M, et al. Impact of biodiesel sorption on tensile properties of PE-HD for container applications[J]. Polymer Testing, 2016, 50:315-324.
  • 加载中
计量
  • 文章访问数:  1596
  • HTML全文浏览数:  1481
  • PDF下载数:  465
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-27
张凯娜, 李嘉, 李晓强, 张华. 塑料表面土霉素的吸附-解吸机制与动力学过程[J]. 环境化学, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703
引用本文: 张凯娜, 李嘉, 李晓强, 张华. 塑料表面土霉素的吸附-解吸机制与动力学过程[J]. 环境化学, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703
ZHANG Kaina, LI Jia, LI Xiaoqiang, ZHANG Hua. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics[J]. Environmental Chemistry, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703
Citation: ZHANG Kaina, LI Jia, LI Xiaoqiang, ZHANG Hua. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics[J]. Environmental Chemistry, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703

塑料表面土霉素的吸附-解吸机制与动力学过程

  • 1.  烟台大学环境与材料工程学院, 烟台, 264005;
  • 2.  中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所), 烟台, 264003;
  • 3.  中国科学院大学, 北京, 100049
基金项目:

国家重点研发计划重点专项(2016YFC1402202)和中国科学院对外合作重点项目(KYSB20160003)资助.

摘要: 采用批量平衡实验的方法研究了土霉素(OTC)在聚乙烯(PE)和聚苯乙烯(PS)两种微塑料表面的吸附-解吸特性,通过扫描电镜(SEM)和傅里叶变换衰减全反射红外光谱(ATR-FTIR)探究了吸附机制.结果表明,OTC在两种微塑料表面的吸附量为:PS-纯水 PE-纯水 PS-海水 PE-海水,分别用线性模型、Freundlich模型和Langmuir模型对等温吸附实验数据进行拟合,结果显示Freundlich模型的拟合程度最高,OTC在两种微塑料上的吸附呈现明显的非线性(n=0.25-0.77),吸附位点存在异质性.吸附过程中没有出现新的基团,分子之间的范德华力以及表面微孔填充是OTC吸附的主要机制,微塑料表面存在的褶皱,裂隙等不规则结构提供了OTC吸附位点.微塑料表面OTC吸附动力学是多个过程共同作用的结果,其过程符合准二级动力学模型,吸附速率为0.0037-2.8 gmg-1h-1,颗粒内扩散可能是主要的反应速率控制步骤.解吸实验结果显示,OTC的累积解吸量为:PS-纯水 PE-纯水 PS-海水 PE-海水,解吸过程符合准二级动力学模型.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回