阴离子黏土处理增强型地热系统返排液的研究

余正艳, 郭清海, 曹耀武, 庄亚芹, 张灿海, 朱明成. 阴离子黏土处理增强型地热系统返排液的研究[J]. 环境化学, 2018, 37(2): 335-346. doi: 10.7524/j.issn.0254-6108.2017050902
引用本文: 余正艳, 郭清海, 曹耀武, 庄亚芹, 张灿海, 朱明成. 阴离子黏土处理增强型地热系统返排液的研究[J]. 环境化学, 2018, 37(2): 335-346. doi: 10.7524/j.issn.0254-6108.2017050902
YU Zhengyan, GUO Qinghai, CAO Yaowu, ZHUANG Yaqin, ZHANG Canhai, ZHU Mingcheng. Treat of the fracturing fluid from Enhanced Geothermal Systems by using selected anion clays[J]. Environmental Chemistry, 2018, 37(2): 335-346. doi: 10.7524/j.issn.0254-6108.2017050902
Citation: YU Zhengyan, GUO Qinghai, CAO Yaowu, ZHUANG Yaqin, ZHANG Canhai, ZHU Mingcheng. Treat of the fracturing fluid from Enhanced Geothermal Systems by using selected anion clays[J]. Environmental Chemistry, 2018, 37(2): 335-346. doi: 10.7524/j.issn.0254-6108.2017050902

阴离子黏土处理增强型地热系统返排液的研究

  • 基金项目:

    国家自然科学基金(41572335)和国家电力投资集团公司科技项目(2015-138-HHS-KJ-X)资助.

Treat of the fracturing fluid from Enhanced Geothermal Systems by using selected anion clays

  • Fund Project: Supported by the National Natural Science Foundation of China(41572335)and the Science and Technology Project of State Power Investment Corporation(2015-138-HHS-KJ-X).
  • 摘要: 增强型地热系统返排液中一般存在多种有害组分.利用不同类型阴离子黏土(焙烧后水铝钙石、焙烧后水氯铁镁石、焙烧后水滑石和CO32-插层水滑石)开展了实验室配制或基于化学刺激实验所获返排液样品中氟、砷、硼、氯等有害阴离子组分的去除实验研究.结果表明,CO32-插层水滑石可用于有效处理以氟化物和/或氯化物为主要有害组分的青海扎仓寺样品和法国Soultz-sous-Forêts样品;而对于以氟、砷、硼为主要有害组分的美国Fenton Hill样品,焙烧后水铝钙石、水氯铁镁石和水滑石的混合物(质量比为1∶1∶4)为处理效果最佳的阴离子黏土组合.
  • 加载中
  • [1] 王贵玲, 马峰, 蔺文静, 等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报, 2015, 33(11):103-107.

    WANG G L, MA F, LIN W J, et al. Reservoir stimulation in hot dry rock resource development[J]. Science & Technology Review, 2015, 33(11):103-107(in Chinese).

    [2] WINCHESTER W. Hot Dry Rock Energy Progress Report Fiscal Year 1992[R]. Los Al unos National Laboratory Report LA-UR-93-1678, Appendix, 1993.
    [3] RICHARDS H G, SAVAGE D, ANDREWS J N. Granite-water reactions in an experimental hot dry rock geothermal reservoir, rosemanowes test site, Cornwall, U.K.[J]. Applied Geochemistry, 1992, 7(3):193-222.
    [4] DURST P, VUATAZ F D. Fluid-rock interactions in hot dry rock reservoirs. A review of the HDR sites and detailed investigations of the Soultz-sous-Forets system[C]. Proceedings World Geothermal Congress. 2000:3677-3682.
    [5] ALTHAUS E. Buchbesprechung[J]. Tschermaks Mineralogische Und Petrographische Mitteilungen, 1982, 29(4):283-284.
    [6] DIETRICH H G. Geological results of the Urach 3 Borehole and the correlation with other boreholes[R]. The Urach Geothermal Project. Stuttgart:Schweitzerbart'sche Verlagsbuchhandlung, 1982, 49-58.
    [7] STENGER R. Petrology and geochemistry of the basement rocks of the research drilling project Urach 3[R]. The Urach Geothermal Project. Stuttgart:Schweitzerbart'sche Verlagsbuchhandlung, 1982, 41-48.
    [8] MATSUNAGA I, MIYAZAKI A, TENMA N, et al. Forced flow and rock-water interaction in a fractured reser voir during a circulation test at the Hijiori hot dry rock test site[J]. Journal of Groundwater Hydrology, 1994, 36(3):229-241.
    [9] KIHO K, MAMBO V S. Reservoir characterisation by geochemical method at the Ogachi HDR Site, Japan[C]. Proceedings of the World Geothermal Congress, Florence, Italy, 1995, 2707-2711.
    [10] 地质矿产部水文地质专业测试中心. 中华人民共和国地质矿产部[M]. 地质出版社, 1995. Geology and mining department hydrogeology professional testing center. Ministry of geology and mineral resources of the People's Republic of China[M]. Geological Publishing House,1995(in Chinese).
    [11] 吕仁庆, 马荔, 项寿鹤. 柱撑阴离子粘土材料研究进展[J]. 中国石油大学学报:自然科学版, 2001, 25(5):120-125.

    LV R Q, MA L, XIANG S H. Progress of studies on pillared anionic clay material[J]. Journal of the University of Petroleum, China:Edition of Natural Science, 2001, 25(5):120-125(in Chinese).

    [12] DÍAZ-NAVA C, SOLACHE-RÍOS M, OLGUÍN M T. Sorption of fluoride ions from aqueous solutions and well drinking water by thermally treated hydrotalcite[J]. Separation Science and Technology, 2003, 38(1):131-147.
    [13] LV L, HE J, WEI M, et al. Treatment of high fluoride concentration water by Mg-Al-CO3 layered double hydroxides:Kinetic and equilibrium studies[J]. Water Research, 2007, 41(7):1534-1542.
    [14] BADILLO-ALMARAZ V E, FLORES J A, ARRIOLA H, et al. Elimination of fluoride ions in water for human consumption using hydroxyapatite as an adsorbent[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 271(3):741-744.
    [15] GUO Q, REARDON E J. Fluoride removal from water by meixnerite and its calcination product[J]. Applied Clay Science, 2012, 56(1):7-15.
    [16] 李洁祥,莫龙庭,谢李娜,等.利用水滑石及其煅烧产物去除水中氟[J].环境科学与技术, 2013(10):191-196. LI J X, MO L T, XIE L N, et al. Water defluoridation by hydrotalcite and its calcination product[J]. Environmental Science & Technology, 2013

    (10):191-196(in Chinese).

    [17] LV L, WANG Y, WEI M, et al. Bromide ion removal from contaminated water by calcined and uncalcined Mg-Al-CO3 layered double hydroxides[J]. Journal of Hazardous Materials, 2008, 152(3):1130-1137.
    [18] 王颖,曲久辉,刘会娟,等. Pd-Cu/水滑石吸附催化氢还原水中的硝酸根[J]. 科学通报, 2006, 51(7):786-791.

    WANG Y, QU J H, LIU H J, et al. Hydrotalcite-supported Pd-Cu catalyst for nitrate adsorption and reduction from water[J]. Chinese Science Bulletin, 2006, 51(7):786-791(in Chinese).

    [19] TERRY P A, DOLAN D, MACCOUX M J, et al. Removal of phosphates and chromates in a multi-ion system[J]. Global Journal of Researches in Engineering, 2014,14(2):10-20.
    [20] AY A N, ZVMREOGLU-KARAN B, TEMEL A. Boron removal by hydrotalcite-like, carbonate-free Mg-Al-NO3-LDH and a rationale on the mechanism[J]. Microporous & Mesoporous Materials, 2007, 98(1):1-5.
    [21] FERREIRA O P, MORAES S G D, DURN N, et al. Evaluation of boron removal from water by hydrotalcite-like compounds[J]. Chemosphere, 2006, 62(1):80-88.
    [22] PAN G X, XU M H, CHEN H F, et al. Interlayer structure and ion-exchange properties of hydrotalcite intercalated with CO32-, CrO42-, SO42- and NO3-[J]. Advanced Materials Research, 2011, 287-290:2102-2105.
    [23] 彭书传,陈天虎,崔康平,等.阴离子粘土吸附As(Ⅴ)的动力学研究[J].地球化学, 2006, 35(3):280-284.

    PENG S Z, CHEN T H, CUI K P, et al. Adsorption kinetics of As(V) from aqueous solution by anionic clay[J]. Geochimica, 2006, 35(3):280-284(in Chinese).

    [24] TVRK T, ALP, DEVEC H. Adsorption of As(V) from water using Mg-Fe-based hydrotalcite (FeHT)[J]. Journal of Hazardous Materials, 2009, 171(1):665-670.
    [25] CREPALDI E L, TRONTO J, CARDOSO L P, et al. Sorption of terephthalate anions by calcined and uncalcined hydrotalcite-like compounds[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2002, 211(2-3):103-114.
    [26] 张钱, 吴平霄. 煅烧阴离子粘土(LDO)对低浓度活性艳橙X-GN的吸附研究[J]. 环境科学学报, 2011, 31(4):770-776.

    ZHAN Q, WU P X. Adsorption of reactive brilliant orange X-GN from aqueous solutions by layered mixed oxides[J]. Acta Scientiae Circumstantiae, 2011, 31(4):770-776(in Chinese).

    [27] GIANNELIS E P, NOCERA D G, PINNAVAIA T J. Anionic photocatalysts supported in layered double hydroxides:Intercalation and photophysical properties of a ruthenium complex anion in synthetic hydrotalcite[J]. Inorganic Chemistry, 1987, 26(1):203-205.
    [28] GUSI S, PIZZOLI F, TRIFIRO F, et al. Preparation of multicomponent catalysts for the hydrogenation of carbon monoxide via hydrotalcite-like precursors[J]. Studies in Surface Science & Catalysis, 1987, 31:753-765.
    [29] MARCELIN G, STOCKHAUSEN N J, POST J F M, et al. Dynamics and ordering of intercalated water in layered metal hydroxides[J]. Journal of Physical Chemistry, 1989, 93(11):4646-4650.
    [30] 天娇, 郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J].环境化学, 2013, 32(8):1571-1579.

    TIAN J, GUO Q H. Research on water contamination treatment by hydrocalumite[J]. Environmental Chemistry, 2013, 32(8):1571-1579(in Chinese).

    [31] GUO Q H, TIAN J. Removal of fluoride and arsenate from aqueous solution by hydrocalμmite via precipitation and anion exchange[J]. Chemical Engineering, Journal, 2013, 231:121-131.
    [32] CAO Y, GUO Q, ZHUANG Y, et al. Removal of harmful constituents from geothermal water by selected anion clays[J]. Procedia Earth & Planetary Science, 2017, 17:161-164.
    [33] GUO Q, CAO Y, ZHUANG Y, et al. Effective treatment of arsenic-bearing water by a layered double metal hydroxide:Iowaite[J]. Applied Geochemistry, 2017,77:206-212.
    [34] CAO Y, GUO Q, SHU Z, et al. Application of calcined iowaite in arsenic removal from aqueous solution[J]. Applied Clay Science, 2016, 126:313-321.
    [35] GUO Q, ZHANG Y, CAO Y, et al. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation[J]. Environmental Science and Pollution Research, 2013, 20(11):8210-8219.
    [36] GUO Q H, GUO Q S. Water defluoridation by hydrotalcite and takovite and subsequent formation of new fluoride-bearing phases.[J]. Environmental Technology, 2013, 34(8):1053-1062.
    [37] ARCO M D, GUTIÉRREZ S, RIVES V, et al. Effect of the Mg:Al ratio on borate (or silicate)/nitrate exchange in hydrotalcite[J]. Journal of Solid State Chemistry, 2000, 151(2):272-280.
    [38] 潘国祥. 层状阴离子粘土设计合成、催化性能及计算模拟研究[D]. 杭州:浙江工业大学, 2009. PAN G X. Design and synthesis, catalytic performance and computer simulation of layered double hydroxides[D]. Hangzhou:Zhejiang University of Technology, 2009(in Chinese).
    [39] LAGERGREN S. About the theory of so-called adsorption of solution substances[C].1998.
  • 加载中
计量
  • 文章访问数:  872
  • HTML全文浏览数:  804
  • PDF下载数:  317
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-09
  • 刊出日期:  2018-02-15

阴离子黏土处理增强型地热系统返排液的研究

  • 1.  中国地质大学(武汉)环境学院, 武汉, 430074;
  • 2.  国家电力投资集团黄河上游水电开发有限责任公司, 西宁, 810008
基金项目:

国家自然科学基金(41572335)和国家电力投资集团公司科技项目(2015-138-HHS-KJ-X)资助.

摘要: 增强型地热系统返排液中一般存在多种有害组分.利用不同类型阴离子黏土(焙烧后水铝钙石、焙烧后水氯铁镁石、焙烧后水滑石和CO32-插层水滑石)开展了实验室配制或基于化学刺激实验所获返排液样品中氟、砷、硼、氯等有害阴离子组分的去除实验研究.结果表明,CO32-插层水滑石可用于有效处理以氟化物和/或氯化物为主要有害组分的青海扎仓寺样品和法国Soultz-sous-Forêts样品;而对于以氟、砷、硼为主要有害组分的美国Fenton Hill样品,焙烧后水铝钙石、水氯铁镁石和水滑石的混合物(质量比为1∶1∶4)为处理效果最佳的阴离子黏土组合.

English Abstract

参考文献 (39)

目录

/

返回文章
返回