氮掺杂石墨烯高效移除水中4-氯苯酚
Efficient removal of 4-chlorophenol in water by nitrogen doped reduced graphene oxide
-
摘要: 采用水热法分别制备了未掺氮和氮掺杂还原氧化石墨烯(N-RGO),以此作为催化性吸附剂,通过活化过硫酸盐(PS)在水相中同时吸附和氧化降解对氯苯酚(4-CP).氮的引入不仅增强石墨烯吸附性能,而且提高其活化PS能力.通过比较未掺氮RGO与N-RGO对初始浓度为40 mg·L-1的4-CP的吸附和降解速率发现,吸附移除率从21.6%增加至39.4%,对应的降解速率常数k值也从0.003 min-1增加至0.13 min-1.随后研究了N掺杂量、PS初始浓度、N-RGO用量及反应温度对吸附降解过程的影响.结果表明,当氨水浓度为14000 mg·L-1时所制备的N-RGO的性能最优.在PS初始浓度为540 mg·L-1,催化剂用量为120 mg·L-1,pH 值为6.6,温度为25 ℃时,25 min对40 mg·L-1的4-CP的总移除率达93%以上.通过稳定性测试显示N-RGO经4次循环使用后仍具有较高性能,该体系在污水处理领域具有良好应用前景.
-
关键词:
- 氮掺杂还原氧化石墨烯 /
- 过硫酸盐 /
- 吸附 /
- 降解 /
- 对氯苯酚
Abstract: Nitrogen doped reduced graphene oxide (N-RGO) and N-free RGO were prepared by hydrothermal treatment of reduced graphene oxide with or without ammonia at 180℃. The adsorption and degradation of 4-chlorophenol (4-CP) on N-free RGO and N-RGO by activating persulfate were studied. The nitrogen modification enhanced not only its adsorption ability, but also its activation ability toward persulfate. Comparing the kinetics of adsorption and degradation of 4-CP (initial concentration 40 mg·L-1) on N-free RGO and N-RGO, the adsorption removal rate was increased from 21.6% to 39.4% and the apparent degradation rate constant k was increased from 0.03 min-1 to 0.13 min-1 after nitrogen modification. The effects of the content of doped N, the amount of PS and N-RGO dosage on the adsorption and degradation of 4-CP were investigated. Under the optimized conditions (ammonia concentration 14000 mg·L-1,dosage 120 mg·L-1, PS concentration 540 mg·L-1, pH 6.6 and reaction temperature 25℃), the total removal rate of 4-CP (initial concentration 40 mg·L-1) within 25 min reached more than 93%.N-RGO can be recycled which shows a good application prospect in the wastewater treatment.-
Key words:
- Nitrogen doped reduced graphene oxide /
- persulfate /
- adsorption /
- degradation /
- 4-chlorophenol
-
-
[1] GUO Y P, ZENG Z Q, LI Y L, et al. Catalytic oxidation of 4-chlorophenol on in-situ sulfur-doped activated carbon with sulfate radicals[J]. Separation and Purification Technology, 2017, 179(5):257-264. [2] 贺京哲, 周世伟, 吕家珑, 等. 不同氯酚催化氧化降解反应动力学[J]. 环境化学, 2017, 36(5):1122-1130. HE J Z, ZHOU S W, LY J L, et al. Catalytic oxidation kinetics of different chlorinated phenols[J]. Environmental Chemistry,2017, 36(5):1122-1130(in Chinese).
[3] 封帆, 高迎新, 张昱, 等. Fenton氧化4-氯酚降解机制研究[J]. 环境化学, 2011, 30(11):1889-1893. FENG F, GAO Y X, ZHANG Y, et al. Decomposition mechanisms of 4-chlorophenol by fenton oxidation[J]. Environmental Chemistry,2011, 30(11):1889-1893(in Chinese).
[4] FENG X, LI W T, FANG L P, et al. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction[J]. Journal of Hazardous Materials, 2016, 308(5):11-20. [5] WANG X B, HUANG S S, ZHU L H, et al. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds[J]. Carbon 2014, 69(4):101-112. [6] LI J M, MENG X G, HU C W, et al. Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan[J]. Bioresource Technology, 2009, 100(3):1168-1173. [7] JACOME M V, BUITRON G, ANDRADE I M, et al. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenolas the sole carbon source[J]. Journal of Hazardous Materials, 2016, 313(8):112-121. [8] HUANG Z D, WEN M, WU Q H, et al. Fabrication of Cu@AgCl nanocables for their enhanced activity toward the catalytic degradation of 4-chlorophenol[J]. Journal of Colloid and Interface Science, 2015, 460(12):230-236. [9] WANG J, XIA Y, ZHAO H Y, et al. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 206(6):406-416. [10] 祁文智, 王凡, 王辉, 等. Pd-Fe/石墨烯多功能催化阴极降解4-氯酚机制研究[J]. 环境科学, 2015, 36(6):2169-2174. QI W Z, WANG F, WANG H, et al. Degradation mechanism of 4-chlorophenol on a Pd-Fe/graphene multifunctional catalytic cathode[J]. Environmental Science, 2015, 36(6):2169-2174(in Chinese).
[11] YAN J C, LEI M, ZHU L H, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2-3):1398-1404. [12] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlori-nated ethenes by heat-activated persulfate:Kinetics and products[J]. Environmental Science & Technology, 2007, 41(3):1010-1015. [13] LAU T K, WEI C, GRAHAM N J D. The aqueous degradation of butylated hydrox-yanisole by UV/S2O82-:Study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007, 41(2):613-619. [14] LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223. [15] ZHU L L, AI Z H, HO W K, et al. Core-shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange[J]. Separation and Purification Technology, 2013, 108(4):159-165. [16] RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene:The new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42):7752-7777. [17] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon:A review of graphene[J]. Chemical Reviews, 2010, 110(1):132-145. [18] XU J, WANG L, ZHU Y F. Decontamination of bisphenol A from aqueous solution by graphene adsorption[J]. Langmuir, 2012, 28(22):8418-8425. [19] HUMMER W, OFFEMAN R. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339-1340. [20] LONG J L, XIE X Q, XU J, et al. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols[J]. ACS Catalysis, 2012, 2(4):622-631. [21] LIN Z Y, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction[J]. Advanced Energy Materials, 2012, 2(7):884-888. [22] REN P G, YAN D X, JI X, et al. Temperature dependence of graphene oxide reduced by hydrazine hydrate[J]. Nanotechnology, 2011, 22(5):055705. [23] LIN Z Y, SONG M, DING Y, et al. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction[J]. Physical chemistry chemical physics, 2012, 14(10):3381-3387. [24] SUN H Q, WANG Y X, LIU S Z, et al. Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation[J]. Chemical Communications, 2013, 49(85):9914-9916. [25] YANG S Y, YANG X, SHAO X T, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials, 2011, 186(1):659-666. [26] HUANG Z F, BAO H W, YAO Y Y, et al. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Applied Catalysis B:Environmental, 2014, 154-155(7-8):36-43. -

计量
- 文章访问数: 1162
- HTML全文浏览数: 1101
- PDF下载数: 245
- 施引文献: 0